OpenCV代码提取: threshold函数的实现
threshold algorithm: The simplest image segmentation method.
All thresholding algorithms take a source image (src) and a threshold value (thresh) as input and produce an output image (dst) by comparing the pixel value at source pixel( x , y ) to the threshold. If src ( x , y ) > thresh , then dst ( x , y ) is assigned a some value. Otherwise dst ( x , y ) is assigned some other value.
Otsu binarization: in simple words, it automatically calculates a threshold value from image histogram for a bimodal image. (For images which are not bimodal,binarization won’t be accurate.). working with bimodal images, Otsu’s algorithmtries to find a threshold value (t) which minimizes the weighted within-class variance. It actually finds a value of t which lies in between two peaks such that variances to both classes are minimum.
Otsu's thresholding method involves iterating through all the possible threshold values and calculating a measure of spread for the pixel levels each side of the threshold, i.e. the pixels that either fall in foreground or background.The aim is to find the threshold value where the sum of foreground and background spreads is at its minimum.
Triangle algorithm: A line is constructed between the maximum of the histogram at brightness bmax and the lowest value bmin in the image. The distance d between the line and the histogram h[b] is computed for all values of b from b = bmin to b = bmax. The brightness value bo where the distance between h[bo] and the line is maximal is the threshold value, that is, threshold = bo. This technique is particularly effective when the object pixels produce a weak peak in the histogram.
图像二值化就是将图像上的像素点的灰度值设置为两个值,一般为0,255或者指定的某个值。
Otsu:
目前fbc_cv库中支持uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致。
实现代码threshold.hpp:
// fbc_cv is free software and uses the same licence as OpenCV // Email: fengbingchun@163.com #ifndef FBC_CV_THRESHOLD_HPP_ #define FBC_CV_THRESHOLD_HPP_ /* reference: include/opencv2/imgproc.hpp modules/imgproc/src/thresh.cpp */ #include <typeinfo> #include "core/mat.hpp" #include "imgproc.hpp" namespace fbc { template<typename _Tp, int chs> static double getThreshVal_Otsu_8u(const Mat_<_Tp, chs>& src); template<typename _Tp, int chs> static double getThreshVal_Triangle_8u(const Mat_<_Tp, chs>& src); template<typename _Tp, int chs> static void thresh_8u(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, uchar thresh, uchar maxval, int type); template<typename _Tp, int chs> static void thresh_32f(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, float thresh, float maxval, int type); // applies fixed-level thresholding to a single-channel array // the Otsu's and Triangle methods are implemented only for 8-bit images // support type: uchar/float, single-channel template<typename _Tp, int chs> double threshold(const Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst, double thresh, double maxval, int type) { FBC_Assert(typeid(uchar).name() == typeid(_Tp).name() || typeid(float).name() == typeid(_Tp).name()); // uchar || float if (dst.empty()) { dst = Mat_<_Tp, chs>(src.rows, src.cols); } else { FBC_Assert(src.rows == dst.rows && src.cols == dst.cols); } int automatic_thresh = (type & ~THRESH_MASK); type &= THRESH_MASK; FBC_Assert(automatic_thresh != (THRESH_OTSU | THRESH_TRIANGLE)); if (automatic_thresh == THRESH_OTSU) { FBC_Assert(sizeof(_Tp) == 1); thresh = getThreshVal_Otsu_8u(src); } else if (automatic_thresh == THRESH_TRIANGLE) { FBC_Assert(sizeof(_Tp) == 1); thresh = getThreshVal_Triangle_8u(src); } if (sizeof(_Tp) == 1) { int ithresh = fbcFloor(thresh); thresh = ithresh; int imaxval = fbcRound(maxval); if (type == THRESH_TRUNC) imaxval = ithresh; imaxval = saturate_cast<uchar>(imaxval); if (ithresh < 0 || ithresh >= 255) { if (type == THRESH_BINARY || type == THRESH_BINARY_INV || ((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < 0) || (type == THRESH_TOZERO && ithresh >= 255)) { int v = type == THRESH_BINARY ? (ithresh >= 255 ? 0 : imaxval) : type == THRESH_BINARY_INV ? (ithresh >= 255 ? imaxval : 0) : /*type == THRESH_TRUNC ? imaxval :*/ 0; dst.setTo(v); } else src.copyTo(dst); return thresh; } thresh = ithresh; maxval = imaxval; } else if (sizeof(_Tp) == 4) { } else { FBC_Error("UnsupportedFormat"); } if (sizeof(_Tp) == 1) { thresh_8u(src, dst, (uchar)thresh, (uchar)maxval, type); } else { thresh_32f(src, dst, (float)thresh, (float)maxval, type); } return 0; } template<typename _Tp, int chs> static double getThreshVal_Otsu_8u(const Mat_<_Tp, chs>& _src) { Size size = _src.size(); const int N = 256; int i, j, h[N] = { 0 }; for (i = 0; i < size.height; i++) { const uchar* src = _src.ptr(i); j = 0; for (; j <= size.width - 4; j += 4) { int v0 = src[j], v1 = src[j + 1]; h[v0]++; h[v1]++; v0 = src[j + 2]; v1 = src[j + 3]; h[v0]++; h[v1]++; } for (; j < size.width; j++) h[src[j]]++; } double mu = 0, scale = 1. / (size.width*size.height); for (i = 0; i < N; i++) mu += i*(double)h[i]; mu *= scale; double mu1 = 0, q1 = 0; double max_sigma = 0, max_val = 0; for (i = 0; i < N; i++) { double p_i, q2, mu2, sigma; p_i = h[i] * scale; mu1 *= q1; q1 += p_i; q2 = 1. - q1; if (std::min(q1, q2) < FLT_EPSILON || std::max(q1, q2) > 1. - FLT_EPSILON) continue; mu1 = (mu1 + i*p_i) / q1; mu2 = (mu - q1*mu1) / q2; sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2); if (sigma > max_sigma) { max_sigma = sigma; max_val = i; } } return max_val; } template<typename _Tp, int chs> static double getThreshVal_Triangle_8u(const Mat_<_Tp, chs>& _src) { Size size = _src.size(); const int N = 256; int i, j, h[N] = { 0 }; for (i = 0; i < size.height; i++) { const uchar* src = _src.ptr(i); j = 0; for (; j <= size.width - 4; j += 4) { int v0 = src[j], v1 = src[j + 1]; h[v0]++; h[v1]++; v0 = src[j + 2]; v1 = src[j + 3]; h[v0]++; h[v1]++; } for (; j < size.width; j++) h[src[j]]++; } int left_bound = 0, right_bound = 0, max_ind = 0, max = 0; int temp; bool isflipped = false; for (i = 0; i < N; i++) { if (h[i] > 0) { left_bound = i; break; } } if (left_bound > 0) left_bound--; for (i = N - 1; i > 0; i--) { if (h[i] > 0) { right_bound = i; break; } } if (right_bound < N - 1) right_bound++; for (i = 0; i < N; i++) { if (h[i] > max) { max = h[i]; max_ind = i; } } if (max_ind - left_bound < right_bound - max_ind) { isflipped = true; i = 0, j = N - 1; while (i < j) { temp = h[i]; h[i] = h[j]; h[j] = temp; i++; j--; } left_bound = N - 1 - right_bound; max_ind = N - 1 - max_ind; } double thresh = left_bound; double a, b, dist = 0, tempdist; // We do not need to compute precise distance here. Distance is maximized, so some constants can // be omitted. This speeds up a computation a bit. a = max; b = left_bound - max_ind; for (i = left_bound + 1; i <= max_ind; i++) { tempdist = a*i + b*h[i]; if (tempdist > dist) { dist = tempdist; thresh = i; } } thresh--; if (isflipped) thresh = N - 1 - thresh; return thresh; } template<typename _Tp, int chs> static void thresh_8u(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, uchar thresh, uchar maxval, int type) { int i, j, j_scalar = 0; uchar tab[256]; Size roi = _src.size(); roi.width *= _src.channels; switch (type) { case THRESH_BINARY: for (i = 0; i <= thresh; i++) tab[i] = 0; for (; i < 256; i++) tab[i] = maxval; break; case THRESH_BINARY_INV: for (i = 0; i <= thresh; i++) tab[i] = maxval; for (; i < 256; i++) tab[i] = 0; break; case THRESH_TRUNC: for (i = 0; i <= thresh; i++) tab[i] = (uchar)i; for (; i < 256; i++) tab[i] = thresh; break; case THRESH_TOZERO: for (i = 0; i <= thresh; i++) tab[i] = 0; for (; i < 256; i++) tab[i] = (uchar)i; break; case THRESH_TOZERO_INV: for (i = 0; i <= thresh; i++) tab[i] = (uchar)i; for (; i < 256; i++) tab[i] = 0; break; default: FBC_Error("Unknown threshold type"); } if (j_scalar < roi.width) { for (i = 0; i < roi.height; i++) { const uchar* src = _src.ptr(i); uchar* dst = _dst.ptr(i); j = j_scalar; for (; j <= roi.width - 4; j += 4) { uchar t0 = tab[src[j]]; uchar t1 = tab[src[j + 1]]; dst[j] = t0; dst[j + 1] = t1; t0 = tab[src[j + 2]]; t1 = tab[src[j + 3]]; dst[j + 2] = t0; dst[j + 3] = t1; } for (; j < roi.width; j++) dst[j] = tab[src[j]]; } } } template<typename _Tp, int chs> static void thresh_32f(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, float thresh, float maxval, int type) { int i, j; Size roi = _src.size(); roi.width *= _src.channels; const float* src = (const float*)_src.ptr(); float* dst = (float*)_dst.ptr(); size_t src_step = _src.step / sizeof(src[0]); size_t dst_step = _dst.step / sizeof(dst[0]); switch (type) { case THRESH_BINARY: for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) { for (j = 0; j < roi.width; j++) dst[j] = src[j] > thresh ? maxval : 0; } break; case THRESH_BINARY_INV: for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) { for (j = 0; j < roi.width; j++) dst[j] = src[j] <= thresh ? maxval : 0; } break; case THRESH_TRUNC: for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) { for (j = 0; j < roi.width; j++) dst[j] = std::min(src[j], thresh); } break; case THRESH_TOZERO: for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) { for (j = 0; j < roi.width; j++) { float v = src[j]; dst[j] = v > thresh ? v : 0; } } break; case THRESH_TOZERO_INV: for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) { for (j = 0; j < roi.width; j++) { float v = src[j]; dst[j] = v <= thresh ? v : 0; } } break; default: FBC_Error("BadArg"); } } } // namespace fbc #endif // FBC_CV_THRESHOLD_HPP_
测试代码test_threshold.cpp:
#include "test_threshold.hpp" #include <assert.h> #include <threshold.hpp> #include <opencv2/opencv.hpp> int test_threshold_uchar() { cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1); if (!matSrc.data) { std::cout << "read image fail" << std::endl; return -1; } cv::cvtColor(matSrc, matSrc, CV_BGR2GRAY); int width = matSrc.cols; int height = matSrc.rows; int types[8] = {0, 1, 2, 3, 4, 7, 8, 16}; for (int i = 0; i < 8; i++) { if (types[i] == 7) continue; double thresh = 135.0; double maxval = 255.0; fbc::Mat_<uchar, 1> mat1(height, width, matSrc.data); fbc::Mat_<uchar, 1> mat2(height, width); fbc::threshold(mat1, mat2, thresh, maxval, types[i]); cv::Mat mat1_(height, width, CV_8UC1, matSrc.data); cv::Mat mat2_; cv::threshold(mat1_, mat2_, thresh, maxval, types[i]); assert(mat2.rows == mat2_.rows && mat2.cols == mat2_.cols && mat2.step == mat2_.step); for (int y = 0; y < mat2.rows; y++) { const fbc::uchar* p1 = mat2.ptr(y); const uchar* p2 = mat2_.ptr(y); for (int x = 0; x < mat2.step; x++) { assert(p1[x] == p2[x]); } } } return 0; } int test_threshold_float() { cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1); if (!matSrc.data) { std::cout << "read image fail" << std::endl; return -1; } cv::cvtColor(matSrc, matSrc, CV_BGR2GRAY); matSrc.convertTo(matSrc, CV_32FC1); int width = matSrc.cols; int height = matSrc.rows; int types[6] = { 0, 1, 2, 3, 4, 7 }; for (int i = 0; i < 6; i++) { if (types[i] == 7) continue; double thresh = 135.0; double maxval = 255.0; fbc::Mat_<float, 1> mat1(height, width, matSrc.data); fbc::Mat_<float, 1> mat2(height, width); fbc::threshold(mat1, mat2, thresh, maxval, types[i]); cv::Mat mat1_(height, width, CV_32FC1, matSrc.data); cv::Mat mat2_; cv::threshold(mat1_, mat2_, thresh, maxval, types[i]); assert(mat2.rows == mat2_.rows && mat2.cols == mat2_.cols && mat2.step == mat2_.step); for (int y = 0; y < mat2.rows; y++) { const fbc::uchar* p1 = mat2.ptr(y); const uchar* p2 = mat2_.ptr(y); for (int x = 0; x < mat2.step; x++) { assert(p1[x] == p2[x]); } } } return 0; }
GitHub:https://github.com/fengbingchun/OpenCV_Test
OpenCV代码提取: threshold函数的实现的更多相关文章
- OpenCV代码提取:transpose函数的实现
OpenCV中的transpose函数实现图像转置,公式为: 目前fbc_cv库中也实现了transpose函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一 ...
- OpenCV代码提取:flip函数的实现
OpenCV中实现图像翻转的函数flip,公式为: 目前fbc_cv库中也实现了flip函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致. 实现代码fli ...
- OpenCV代码提取:dft函数的实现
The Fourier Transform will decompose an image into its sinus and cosines components. In other words, ...
- OpenCV代码提取:遍历指定目录下指定文件的实现
前言 OpenCV 3.1之前的版本,在contrib目录下有提供遍历文件的函数,用起来比较方便.但是在最新的OpenCV 3.1版本给去除掉了.为了以后使用方便,这里将OpenCV 2.4.9中相关 ...
- OpenCV中threshold函数的使用
转自:https://blog.csdn.net/u012566751/article/details/77046445 一篇很好的介绍threshold文章: 图像的二值化就是将图像上的像素点的灰度 ...
- OpenCV 学习笔记03 threshold函数
opencv-python 4.0.1 简介:该函数是对数组中的每一个元素(each array element)应用固定级别阈值(Applies a fixed-level threshold) ...
- opencv二值化的cv2.threshold函数
(一)简单阈值 简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了.函数为cv2.threshold() 这个函数有四个参数,第一个原图像,第二个进行分类的阈值,第三个 ...
- OpenCV中的绘图函数-OpenCV步步精深
OpenCV 中的绘图函数 画线 首先要为画的线创造出环境,就要生成一个空的黑底图像 img=np.zeros((512,512,3), np.uint8) 这是黑色的底,我们的画布,我把窗口名叫做i ...
- 基础学习笔记之opencv(24):imwrite函数的使用
http://www.cnblogs.com/tornadomeet/archive/2012/12/26/2834336.html 前言 OpenCV中保存图片的函数在c++版本中变成了imwrit ...
随机推荐
- SQA1
客观地验证软件项目产品和工作是否遵循恰当的标准.步骤和需求. 2.将软件质量保证工作及结果通知给相关组别和个人.
- php多进程写入文件
测试一 $begin = time(); for ($i=0; $i<10000; $i++) { $fp = fopen("tmp", 'r+'); fseek($fp, ...
- PythonTip(2)
结尾0的个数 描述: 给你一个正整数列表 L, 输出L内所有数字的乘积末尾0的个数.(提示:不要直接相乘,数字很多,相乘得到的结果可能会很大). 例如: L=[2,8,3,50], 则输出:2 n = ...
- Sublime Text 插件 【转】
好厉害,好漂亮. http://www.cnsecer.com/460.html 安装Sublime Text 3插件的方法: 朋友们,小站活着不容易,全靠广告费养着了,如果本文对你有帮助.麻烦动下手 ...
- eclipse properties 文件查看和编辑插件
*.properties属性文件,如果文件中包含中文,会出现乱码.为了解决这个问题,可以为Eclipse安装Properties Editor插件解决这个问题. 步骤 1 安装Properties ...
- php new self()关键字的用法
今天开框架源码,发现有用到new self()的用法 有点不懂 在网上查了一下,给大家说一下: 在类中 self的用法 和this的用法差不多 , php new self() 一般在类内部使用 ...
- 【luogu P2746 [USACO5.3]校园网Network of Schools】 题解
题目链接:https://www.luogu.org/problemnew/show/P2812 注意:判断出入度是否为0的时候枚举只需到颜色的数量. 坑点:当只有一个强连通分量时,不需要再添加新边. ...
- sql server 语句获取表的描述,主键等等
sql语句添加表,字段的描述 --添加表的描述 --格式如右:execute sp_addextendedproperty 'MS_Description','字段备注信息','user','dbo' ...
- 经验之谈—控制器的view的显示
经验之谈—控制器的view的显示 开发中,我们经常需要将一个控制器的view添加到另一个控制器的view上,这种效果是我们期望看到的,但是里边隐藏着一些细节,不注意的话,可能会达不到我们想到的效果. ...
- awk分隔符
最近需要检测日志,shell中用到了awk,因为分割条件不止一个,并且包括了中括号.在此记录一下关于多分隔符并且包含中括号的情况 awk -F'[=,]|[][]+' '{print $6}'