threshold algorithm: The simplest image segmentation method.

All thresholding algorithms take a source image (src) and a threshold value (thresh) as input and produce an output image (dst) by comparing the pixel value at source pixel( x , y ) to the threshold. If src ( x , y ) > thresh , then dst ( x , y ) is assigned a some value. Otherwise dst ( x , y ) is assigned some other value.

Otsu binarization: in simple words, it automatically calculates a threshold value from image histogram for a bimodal image. (For images which are not bimodal,binarization won’t be accurate.). working with bimodal images, Otsu’s algorithmtries to find a threshold value (t) which minimizes the weighted within-class variance. It actually finds a value of t which lies in between two peaks such that variances to both classes are minimum.

Otsu's thresholding method involves iterating through all the possible threshold values and calculating a measure of spread for the pixel levels each side of the threshold, i.e. the pixels that either fall in foreground or background.The aim is to find the threshold value where the sum of foreground and background spreads is at its minimum.

Triangle algorithm: A line is constructed between the maximum of the histogram at brightness bmax and the lowest value bmin in the image. The distance d between the line and the histogram h[b] is computed for all values of b from b = bmin to b = bmax. The brightness value bo where the distance between h[bo] and the line is maximal is the threshold value, that is, threshold = bo. This technique is particularly effective when the object pixels produce a weak peak in the histogram.

图像二值化就是将图像上的像素点的灰度值设置为两个值,一般为0,255或者指定的某个值。

Otsu:

目前fbc_cv库中支持uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致。

实现代码threshold.hpp:

// fbc_cv is free software and uses the same licence as OpenCV
// Email: fengbingchun@163.com

#ifndef FBC_CV_THRESHOLD_HPP_
#define FBC_CV_THRESHOLD_HPP_

/* reference: include/opencv2/imgproc.hpp
              modules/imgproc/src/thresh.cpp
*/

#include <typeinfo>
#include "core/mat.hpp"
#include "imgproc.hpp"

namespace fbc {

template<typename _Tp, int chs> static double getThreshVal_Otsu_8u(const Mat_<_Tp, chs>& src);
template<typename _Tp, int chs> static double getThreshVal_Triangle_8u(const Mat_<_Tp, chs>& src);
template<typename _Tp, int chs> static void thresh_8u(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, uchar thresh, uchar maxval, int type);
template<typename _Tp, int chs> static void thresh_32f(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, float thresh, float maxval, int type);

// applies fixed-level thresholding to a single-channel array
// the Otsu's and Triangle methods are implemented only for 8-bit images
// support type: uchar/float, single-channel
template<typename _Tp, int chs>
double threshold(const Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst, double thresh, double maxval, int type)
{
	FBC_Assert(typeid(uchar).name() == typeid(_Tp).name() || typeid(float).name() == typeid(_Tp).name()); // uchar || float
	if (dst.empty()) {
		dst = Mat_<_Tp, chs>(src.rows, src.cols);
	} else {
		FBC_Assert(src.rows == dst.rows && src.cols == dst.cols);
	}

	int automatic_thresh = (type & ~THRESH_MASK);
	type &= THRESH_MASK;

	FBC_Assert(automatic_thresh != (THRESH_OTSU | THRESH_TRIANGLE));
	if (automatic_thresh == THRESH_OTSU) {
		FBC_Assert(sizeof(_Tp) == 1);
		thresh = getThreshVal_Otsu_8u(src);
	} else if (automatic_thresh == THRESH_TRIANGLE) {
		FBC_Assert(sizeof(_Tp) == 1);
		thresh = getThreshVal_Triangle_8u(src);
	}

	if (sizeof(_Tp) == 1) {
		int ithresh = fbcFloor(thresh);
		thresh = ithresh;
		int imaxval = fbcRound(maxval);
		if (type == THRESH_TRUNC)
			imaxval = ithresh;
		imaxval = saturate_cast<uchar>(imaxval);

		if (ithresh < 0 || ithresh >= 255) {
			if (type == THRESH_BINARY || type == THRESH_BINARY_INV ||
				((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < 0) ||
				(type == THRESH_TOZERO && ithresh >= 255)) {
				int v = type == THRESH_BINARY ? (ithresh >= 255 ? 0 : imaxval) :
					type == THRESH_BINARY_INV ? (ithresh >= 255 ? imaxval : 0) :
					/*type == THRESH_TRUNC ? imaxval :*/ 0;
				dst.setTo(v);
			}
			else
				src.copyTo(dst);
			return thresh;
		}
		thresh = ithresh;
		maxval = imaxval;
	} else if (sizeof(_Tp) == 4) {
	} else {
		FBC_Error("UnsupportedFormat");
	}

	if (sizeof(_Tp) == 1) {
		thresh_8u(src, dst, (uchar)thresh, (uchar)maxval, type);
	} else {
		thresh_32f(src, dst, (float)thresh, (float)maxval, type);
	}

	return 0;
}

template<typename _Tp, int chs>
static double getThreshVal_Otsu_8u(const Mat_<_Tp, chs>& _src)
{
	Size size = _src.size();
	const int N = 256;
	int i, j, h[N] = { 0 };

	for (i = 0; i < size.height; i++) {
		const uchar* src = _src.ptr(i);
		j = 0;
		for (; j <= size.width - 4; j += 4) {
			int v0 = src[j], v1 = src[j + 1];
			h[v0]++; h[v1]++;
			v0 = src[j + 2]; v1 = src[j + 3];
			h[v0]++; h[v1]++;
		}
		for (; j < size.width; j++)
			h[src[j]]++;
	}

	double mu = 0, scale = 1. / (size.width*size.height);
	for (i = 0; i < N; i++)
		mu += i*(double)h[i];

	mu *= scale;
	double mu1 = 0, q1 = 0;
	double max_sigma = 0, max_val = 0;

	for (i = 0; i < N; i++) {
		double p_i, q2, mu2, sigma;

		p_i = h[i] * scale;
		mu1 *= q1;
		q1 += p_i;
		q2 = 1. - q1;

		if (std::min(q1, q2) < FLT_EPSILON || std::max(q1, q2) > 1. - FLT_EPSILON)
			continue;

		mu1 = (mu1 + i*p_i) / q1;
		mu2 = (mu - q1*mu1) / q2;
		sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2);
		if (sigma > max_sigma) {
			max_sigma = sigma;
			max_val = i;
		}
	}

	return max_val;
}

template<typename _Tp, int chs>
static double getThreshVal_Triangle_8u(const Mat_<_Tp, chs>& _src)
{
	Size size = _src.size();
	const int N = 256;
	int i, j, h[N] = { 0 };

	for (i = 0; i < size.height; i++) {
		const uchar* src = _src.ptr(i);
		j = 0;
		for (; j <= size.width - 4; j += 4) {
			int v0 = src[j], v1 = src[j + 1];
			h[v0]++; h[v1]++;
			v0 = src[j + 2]; v1 = src[j + 3];
			h[v0]++; h[v1]++;
		}

		for (; j < size.width; j++)
			h[src[j]]++;
	}

	int left_bound = 0, right_bound = 0, max_ind = 0, max = 0;
	int temp;
	bool isflipped = false;

	for (i = 0; i < N; i++) {
		if (h[i] > 0) {
			left_bound = i;
			break;
		}
	}
	if (left_bound > 0)
		left_bound--;

	for (i = N - 1; i > 0; i--) {
		if (h[i] > 0) {
			right_bound = i;
			break;
		}
	}
	if (right_bound < N - 1)
		right_bound++;

	for (i = 0; i < N; i++) {
		if (h[i] > max) {
			max = h[i];
			max_ind = i;
		}
	}

	if (max_ind - left_bound < right_bound - max_ind) {
		isflipped = true;
		i = 0, j = N - 1;
		while (i < j) {
			temp = h[i]; h[i] = h[j]; h[j] = temp;
			i++; j--;
		}
		left_bound = N - 1 - right_bound;
		max_ind = N - 1 - max_ind;
	}

	double thresh = left_bound;
	double a, b, dist = 0, tempdist;

	// We do not need to compute precise distance here. Distance is maximized, so some constants can
	// be omitted. This speeds up a computation a bit.
	a = max; b = left_bound - max_ind;
	for (i = left_bound + 1; i <= max_ind; i++) {
		tempdist = a*i + b*h[i];
		if (tempdist > dist) {
			dist = tempdist;
			thresh = i;
		}
	}
	thresh--;

	if (isflipped)
		thresh = N - 1 - thresh;

	return thresh;
}

template<typename _Tp, int chs>
static void thresh_8u(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, uchar thresh, uchar maxval, int type)
{
	int i, j, j_scalar = 0;
	uchar tab[256];
	Size roi = _src.size();
	roi.width *= _src.channels;

	switch (type) {
	case THRESH_BINARY:
		for (i = 0; i <= thresh; i++)
			tab[i] = 0;
		for (; i < 256; i++)
			tab[i] = maxval;
		break;
	case THRESH_BINARY_INV:
		for (i = 0; i <= thresh; i++)
			tab[i] = maxval;
		for (; i < 256; i++)
			tab[i] = 0;
		break;
	case THRESH_TRUNC:
		for (i = 0; i <= thresh; i++)
			tab[i] = (uchar)i;
		for (; i < 256; i++)
			tab[i] = thresh;
		break;
	case THRESH_TOZERO:
		for (i = 0; i <= thresh; i++)
			tab[i] = 0;
		for (; i < 256; i++)
			tab[i] = (uchar)i;
		break;
	case THRESH_TOZERO_INV:
		for (i = 0; i <= thresh; i++)
			tab[i] = (uchar)i;
		for (; i < 256; i++)
			tab[i] = 0;
		break;
	default:
		FBC_Error("Unknown threshold type");
	}

	if (j_scalar < roi.width) {
		for (i = 0; i < roi.height; i++) {
			const uchar* src = _src.ptr(i);
			uchar* dst = _dst.ptr(i);
			j = j_scalar;

			for (; j <= roi.width - 4; j += 4) {
				uchar t0 = tab[src[j]];
				uchar t1 = tab[src[j + 1]];

				dst[j] = t0;
				dst[j + 1] = t1;

				t0 = tab[src[j + 2]];
				t1 = tab[src[j + 3]];

				dst[j + 2] = t0;
				dst[j + 3] = t1;
			}

			for (; j < roi.width; j++)
				dst[j] = tab[src[j]];
		}
	}
}

template<typename _Tp, int chs>
static void thresh_32f(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, float thresh, float maxval, int type)
{
	int i, j;
	Size roi = _src.size();
	roi.width *= _src.channels;
	const float* src = (const float*)_src.ptr();
	float* dst = (float*)_dst.ptr();
	size_t src_step = _src.step / sizeof(src[0]);
	size_t dst_step = _dst.step / sizeof(dst[0]);

	switch (type) {
	case THRESH_BINARY:
		for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) {
			for (j = 0; j < roi.width; j++)
				dst[j] = src[j] > thresh ? maxval : 0;
		}
		break;

	case THRESH_BINARY_INV:
		for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) {
			for (j = 0; j < roi.width; j++)
				dst[j] = src[j] <= thresh ? maxval : 0;
		}
		break;

	case THRESH_TRUNC:
		for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) {
			for (j = 0; j < roi.width; j++)
				dst[j] = std::min(src[j], thresh);
		}
		break;

	case THRESH_TOZERO:
		for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) {
			for (j = 0; j < roi.width; j++) {
				float v = src[j];
				dst[j] = v > thresh ? v : 0;
			}
		}
		break;

	case THRESH_TOZERO_INV:
		for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) {
			for (j = 0; j < roi.width; j++) {
				float v = src[j];
				dst[j] = v <= thresh ? v : 0;
			}
		}
		break;
	default:
		FBC_Error("BadArg");
	}
}

} // namespace fbc

#endif // FBC_CV_THRESHOLD_HPP_

测试代码test_threshold.cpp:

#include "test_threshold.hpp"
#include <assert.h>

#include <threshold.hpp>
#include <opencv2/opencv.hpp>

int test_threshold_uchar()
{
	cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
	if (!matSrc.data) {
		std::cout << "read image fail" << std::endl;
		return -1;
	}
	cv::cvtColor(matSrc, matSrc, CV_BGR2GRAY);

	int width = matSrc.cols;
	int height = matSrc.rows;
	int types[8] = {0, 1, 2, 3, 4, 7, 8, 16};

	for (int i = 0; i < 8; i++) {
		if (types[i] == 7) continue;
		double thresh = 135.0;
		double maxval = 255.0;

		fbc::Mat_<uchar, 1> mat1(height, width, matSrc.data);
		fbc::Mat_<uchar, 1> mat2(height, width);
		fbc::threshold(mat1, mat2, thresh, maxval, types[i]);

		cv::Mat mat1_(height, width, CV_8UC1, matSrc.data);
		cv::Mat mat2_;
		cv::threshold(mat1_, mat2_, thresh, maxval, types[i]);

		assert(mat2.rows == mat2_.rows && mat2.cols == mat2_.cols && mat2.step == mat2_.step);
		for (int y = 0; y < mat2.rows; y++) {
			const fbc::uchar* p1 = mat2.ptr(y);
			const uchar* p2 = mat2_.ptr(y);

			for (int x = 0; x < mat2.step; x++) {
				assert(p1[x] == p2[x]);
			}
		}
	}

	return 0;
}

int test_threshold_float()
{
	cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
	if (!matSrc.data) {
		std::cout << "read image fail" << std::endl;
		return -1;
	}
	cv::cvtColor(matSrc, matSrc, CV_BGR2GRAY);
	matSrc.convertTo(matSrc, CV_32FC1);

	int width = matSrc.cols;
	int height = matSrc.rows;
	int types[6] = { 0, 1, 2, 3, 4, 7 };

	for (int i = 0; i < 6; i++) {
		if (types[i] == 7) continue;
		double thresh = 135.0;
		double maxval = 255.0;

		fbc::Mat_<float, 1> mat1(height, width, matSrc.data);
		fbc::Mat_<float, 1> mat2(height, width);
		fbc::threshold(mat1, mat2, thresh, maxval, types[i]);

		cv::Mat mat1_(height, width, CV_32FC1, matSrc.data);
		cv::Mat mat2_;
		cv::threshold(mat1_, mat2_, thresh, maxval, types[i]);

		assert(mat2.rows == mat2_.rows && mat2.cols == mat2_.cols && mat2.step == mat2_.step);
		for (int y = 0; y < mat2.rows; y++) {
			const fbc::uchar* p1 = mat2.ptr(y);
			const uchar* p2 = mat2_.ptr(y);

			for (int x = 0; x < mat2.step; x++) {
				assert(p1[x] == p2[x]);
			}
		}
	}

	return 0;
}

GitHubhttps://github.com/fengbingchun/OpenCV_Test

OpenCV代码提取: threshold函数的实现的更多相关文章

  1. OpenCV代码提取:transpose函数的实现

    OpenCV中的transpose函数实现图像转置,公式为: 目前fbc_cv库中也实现了transpose函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一 ...

  2. OpenCV代码提取:flip函数的实现

    OpenCV中实现图像翻转的函数flip,公式为: 目前fbc_cv库中也实现了flip函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致. 实现代码fli ...

  3. OpenCV代码提取:dft函数的实现

    The Fourier Transform will decompose an image into its sinus and cosines components. In other words, ...

  4. OpenCV代码提取:遍历指定目录下指定文件的实现

    前言 OpenCV 3.1之前的版本,在contrib目录下有提供遍历文件的函数,用起来比较方便.但是在最新的OpenCV 3.1版本给去除掉了.为了以后使用方便,这里将OpenCV 2.4.9中相关 ...

  5. OpenCV中threshold函数的使用

    转自:https://blog.csdn.net/u012566751/article/details/77046445 一篇很好的介绍threshold文章: 图像的二值化就是将图像上的像素点的灰度 ...

  6. OpenCV 学习笔记03 threshold函数

    opencv-python   4.0.1 简介:该函数是对数组中的每一个元素(each array element)应用固定级别阈值(Applies a fixed-level threshold) ...

  7. opencv二值化的cv2.threshold函数

    (一)简单阈值 简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了.函数为cv2.threshold() 这个函数有四个参数,第一个原图像,第二个进行分类的阈值,第三个 ...

  8. OpenCV中的绘图函数-OpenCV步步精深

    OpenCV 中的绘图函数 画线 首先要为画的线创造出环境,就要生成一个空的黑底图像 img=np.zeros((512,512,3), np.uint8) 这是黑色的底,我们的画布,我把窗口名叫做i ...

  9. 基础学习笔记之opencv(24):imwrite函数的使用

    http://www.cnblogs.com/tornadomeet/archive/2012/12/26/2834336.html 前言 OpenCV中保存图片的函数在c++版本中变成了imwrit ...

随机推荐

  1. scrum3

    首先我一直做的是框架的设计,但不同的是这次我们整合完善了这个软件目前的所有需求也定义好了它的大题框架,总的来说设计部分已经结束,现在也就是本次冲刺,我们将重点进行整个软件的数据库编程环节,也就是用SQ ...

  2. 如何从ERP将Material的Batch信息下载到CRM并存储在settype COMM_PR_BATCH里

    前提条件:必须先确保三个对象ATTRIBUTE, CLASS和OBJCL成功下载.可以到事物码R3AM1里查看,确保状态全部为Done. (1) 在事物码MM02里,切换到视图classificati ...

  3. 如何查找Fiori UI上某个字段对应的后台存储表的名称

    今天微信群里有朋友问到这个问题. 如果是SAPGUI里的事务码,比如MM01,对于开发者来说这个任务非常容易完成. 比如我想知道下图"Sales Unit"这个字段的值到底保存在哪 ...

  4. 《机器学习实战》中贝叶斯分类中导入RSS源例子

    跟着书中代码往下写在这里卡住了,考虑到可能还会有其他同学也遇到了这样的问题,记下来分享. 先吐槽一下,相信大部分网友在这里卡住的主要原因是伟大的GFW,所以无论是软件FQ还是肉身FQ的小伙伴们估计是无 ...

  5. mongodb文档替换

    对下面的文档做一个比较大的调整,将 friends.enemies两个字段移到 relationships子文档中. > db.people.insert({ "name" ...

  6. table中设置tr行间距

    CSS border-collapse 属性设置表格的边框是否被合并为一个单一的边框 值 描述 separate 默认值.边框会被分开.不会忽略 border-spacing 和 empty-cell ...

  7. lucene&solr学习——创建和查询索引(理论)

    1.Lucene基础 (1) 简介 Lucene是apache下的一个开放源代码的全文检索引擎工具包.提供完整的查询引擎和索引引擎:部分文本分析引擎. Lucene的目的是为软件开发人员提供一个简单易 ...

  8. 学习WebSocket笔记

    由于HTTP协议是无状态的,服务器只会响应来自客户端的请求,但是它与客户端之间不具备持续连接. 当用户在浏览器上进行操作时,可以请求服务器上的api:但是反过来不可以:服务端发生了一件事,无法将这个事 ...

  9. view添加毛玻璃效果两种方法

    第一种方法: UIBlurEffect *effect = [UIBlurEffect effectWithStyle:UIBlurEffectStyleLight]; UIVisualEffectV ...

  10. 开发一个c#的数据库连接池

    c#操作数据库是一个经典,用习惯了以后真感觉不错,很简单的.现在很多关系数据库都支持c#.c#的ADO.NET规范都遵守. 对于一般的设置,ADO.NET都放在数据库连接字符串上.比如池化,连接超时等 ...