图论中,连通图基于连通的概念。在一个无向图 G 中,若从顶点vi到顶点vj有路径相连(当然从vj到vi也一定有路径),则称vi和vj是连通的。如果 G 是有向图,那么连接vi和vj的路径中所有的边都必须同向。如果图中任意两点都是连通的,那么图被称作连通图。如果此图是有向图,则称为强连通图(注意:需要双向都有路径)。图的连通性是图的基本性质。
 

严格定义(摘抄):

对一个图 G=(V,E) 中的两点 xy ,若存在交替的顶点和边的序列
Γ=(x=v0-e1-v1-e2-...-ek-(vk+1)=y) (在有向图中要求有向边vi−( vi+1)属于E ),则两点 xy 是连通的。Γ是一条xy的连通路径,xy分别是起点和终点。当 x = y 时,Γ 被称为回路。如果通路 Γ 中的边两两不同,则 Γ 是一条简单通路,否则为一条复杂通路。如果图 G 中每两点间皆连通,则 G 是连通图。
 
基本方法:
简单的随便从一个点开始bfs,每遍历到一个点都将那个点打好标记,并且统计个数,在dfs退出以后比较统计的连通的点的个数是否等于我们的节点个数,等于则是连通图,不等则不是连通图。
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <vector>
using namespace std; const int maxn = + ; int n,m;
int my_index; vector<int >G[maxn];
bool vis[maxn]; void dfs(int u){
my_index++;
vis[u] = true;
for(int i = ;i < G[u].size(); i++){
int v = G[u][i];
if(!vis[v])dfs(v);
}
} int main(){
scanf("%d%d",&n,&m);
for(int i = ;i <= m; i++){
int a,b;
scanf("%d%d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
dfs();
if(n == my_index)printf("Yes\n");
else printf("No\n");
}

dfs判断连通图(无向)的更多相关文章

  1. DFS判断连通图

    因为是连通图,所以从任意一点出发,一定可以通过一遍深度优先遍历就能走过所有的点和边,就可以利用这个性质来很容易的通过DFS判断图是否为连通图 下面是具体算法:

  2. bfs判断连通图(无向)

    在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点vi到顶点vj有路径相连(当然从vj到vi也一定有路径),则称vi和vj是连通的.如果 G 是有向图,那么连接vi和vj的路径中所有的边都 ...

  3. CSU 1660 K-Cycle(dfs判断无向图中是否存在长度为K的环)

    题意:给你一个无向图,判断是否存在长度为K的环. 思路:dfs遍历以每一个点为起点是否存在长度为k的环.dfs(now,last,step)中的now表示当前点,last表示上一个访问的 点,step ...

  4. Battle Over Cities (25)(DFS、连通图)

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...

  5. cf290-2015-2-3总结与反思(dfs判断无向图是否有环)

    bool dfs(int i,int pre) { visit[i]=true; ;j<=v;j++) if(g[i][j]) { if(!visit[j]) return dfs(j,i); ...

  6. 二分图学习——基础dfs判断二分图

    #include <iostream> #include <cstdio> #include <string.h> #include <vector> ...

  7. ZOJ 2475 Benny's Compiler(dfs判断有向图给定点有没有参与构成环)

    B - Benny's Compiler Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu ...

  8. 算法——dfs 判断是否为BST

    95. 验证二叉查找树 中文English 给定一个二叉树,判断它是否是合法的二叉查找树(BST) 一棵BST定义为: 节点的左子树中的值要严格小于该节点的值. 节点的右子树中的值要严格大于该节点的值 ...

  9. DFS判断图是否有环

      利用_DFS_来判断无向图是否存在环的条件思路,我看一次_DFS_是否能访问到之前访问到的节点,如果能够访问到,就说明图存在环,那么关键问题就是判断是一次DFS?,追根到_DFS_算法的实现细节, ...

随机推荐

  1. HDU 1754 I Hate It 线段树单点更新求最大值

    题目链接 线段树入门题,线段树单点更新求最大值问题. #include <iostream> #include <cstdio> #include <cmath> ...

  2. fibonacci数列(五种)

    自己没动脑子,大部分内容转自:http://www.jb51.net/article/37286.htm 斐波拉契数列,看起来好像谁都会写,不过它写的方式却有好多种,不管用不用的上,先留下来再说. 1 ...

  3. [转]Unicode utf8等编码类型的原理

    FROM:http://www.cnblogs.com/daxiong2014/p/4768681.html 1.ASCII码          我们知道,在计算机内部,所有的信息最终都表示为一个二进 ...

  4. django一些操作命令

    1.数据库与class类同步命令 syncdb command is deprecated in django 1.7. Use the python manage.py migrate instea ...

  5. 【Java EE 学习 78 下】【数据采集系统第十天】【数据采集系统完成】

    一.项目源代码地址 二.项目演示

  6. 基于SOUI开发的应用展示

    本页面列出基于SOUI开发的产品 欢迎使用SOUI的朋友提供资源:setoutsoft#qq.com  #->@ 千万级平台后台在线监测客户端 1, 主页:用于显示管理服务端在线情况,左侧栏包括 ...

  7. c++ boost asio库初学习

    前些日子研究了一个c++的一个socket库,留下范例代码给以后自己参考. 同步server: // asio_server.cpp : コンソール アプリケーションのエントリ ポイントを定義します. ...

  8. 解决C# WinForm Graphics绘制闪烁问题

    不直接使用form的CreateGraphics创建Graphics进行绘制,可以先在Form上面放一个需要大小的PictureBox,再创建一个同大小的Bitmap,将这个Bitmap设置为Pict ...

  9. ZooKeerper学习之Watcher

    ZooKeeper为我们提供了用于监视结点变化的Watcher机方法制: 1.可以注册Watcher的方法:getData().exists().getChildren().我们可以通过查看ZooKe ...

  10. 学习微信小程序之css12设置盒子内容的宽高

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...