这两道题是一样的......

我就说一下较难的那个 OSU!:

这道15行的水题我竟然做了两节课......

若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i][1]=p*(f[i-1][0]+1.0)+p*(f[i-1][1]+OOXX);

我们合并一下f[i]=p*1.0+p*OOXX=p*OX;

OX:就是期望x^3的差,也就是(x+1)^3=x^3+3*x^2+3*x+1.0,中的3*x^2+3*x+1.0,这样我们要维护x^2以及x注意这里的x^2和x是指结尾的长度x

#include<cstdio>
double f,p,X2,X1;
int n;
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%lf",&p);
f+=p*(3.0*X2+3.0*X1+1.0);
X2=p*(X2+2.0*X1+1.0);
X1=p*(X1+1.0);
}
printf("%.1lf",f);
}

下面给一下Easy的代码

#include<cstdio>
#include<cstring>
using namespace std;
char s[];
double ans,X,now;
int len;
int main()
{
scanf("%d%s",&len,s);
for(int i=;i<len;i++)
{
if(s[i]=='?')now=0.5;
else if(s[i]=='o')now=1.0;
else now=0.0;
ans+=now*(2.0*X+1.0);
X=now*(X+1.0);
}
printf("%.4lf",ans);
return ;
}

BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  3. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  4. BZOJ 4318 OSU! ——期望DP

    这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...

  5. [bzoj3450]Tyvj1952 Easy[概率dp]

    和之前一样考虑这个音符时x还是o,如果是x,是否是新的连续一段,对答案的贡献是多少$(a^2-{(a-1)}^2)$,然后递推就可以了. #include <bits/stdc++.h> ...

  6. bzoj 4318 OSU! - 动态规划 - 概率与期望

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  7. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  8. bzoj 4318 OSU 概率期望dp

    可以发现:f[i]转移到f[i+1]只和最后一串1的长度和平方有关, 因为如果新加的位置是1,贡献就是(x+1)^3-x^3=3x^2+3x+1,否则为0: 所以对于每一个位置,处理出期望的f,x和x ...

  9. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

随机推荐

  1. stm32+lwip(一):使用STM32CubeMX生成项目

    我是卓波,很高兴你来看我的博客. 系列文章: stm32+lwip(一):使用STM32CubeMX生成项目 stm32+lwip(二):UDP测试 stm32+lwip(三):TCP测试 stm32 ...

  2. 6 wireshark 安装使用 数据包抓取

    1.wireshark安装 2.开始使用 3.界面详情 4. 数据包抓取 5.过滤数据

  3. 深入理解计算机系统(1)--hello world程序的生命周期

    第一篇笔记的主题是讨论Hello World程序的生命周期,程序是最简单的hello world程序,使用高级C语言编写. 先介绍整个生命周期中涉及到的几个部分以及相应的概念,然后总结整个生命周期,最 ...

  4. javascript的优美与鸡肋

    --总结来自:<javascript语言精粹> 任何语言都有其优美的地方和其鸡肋的地方.避归一些语言的糟粕,能相应的降低bug出现的几率. 优美处: 函数是头等对象 基于原型继承的动态对象 ...

  5. 如何理解Java中参数传递只能传值?

    以前学习C#的时候,是完全在工作岗位上学习,一些底层较为深入的道理都不是很清楚.如今学习了Java,对于Java参数传递只能传值,不能传引用(指针)感到很困惑,在C#中不是常常说把某个引用传递到函数中 ...

  6. NoSQL简单学习(一)

    只是简单的知道有这个东西,却从来没有去接触,今天看了几篇文章,记录一下,开始慢慢接触这一领域 简介: 8种Nosql数据库系统对比 http://blog.jobbole.com/1344/ 一网打尽 ...

  7. Kotlin 1 函数

    #2 函数 函数声明和平时我见到的有点不太一样,使用关键字fun来声明.(感觉好欢乐的样子···O(∩_∩)O~~) 下面的示例,简单的声明了一个函数: // 这是函数声明 fun this_is_a ...

  8. Struts2(四.注册时检查用户名是否存在及Action获取数据的三种方式)

    一.功能 1.用户注册页面 <%@ page language="java" contentType="text/html; charset=UTF-8" ...

  9. 一款代码高亮插件 -- SyntaxHighlighter

    SyntaxHighlighter 是当前用得最多的一款代码高亮插件,包括本博客也用到了该插件来显示代码,大家可以看到效果了.只不过这是针对WordPress的一款代码高亮插件,而今天我要给大家介绍的 ...

  10. LeetCode 86 ——分隔链表

    1. 题目 2. 解答 从前向后遍历链表,将结点值小于 x 的结点放入到新链表 1 中,将结点值大于等于 x 的结点放入新链表 2 中.最后,将新链表 2 拼接在新链表 1 后面即可. /** * D ...