这两道题是一样的......

我就说一下较难的那个 OSU!:

这道15行的水题我竟然做了两节课......

若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i][1]=p*(f[i-1][0]+1.0)+p*(f[i-1][1]+OOXX);

我们合并一下f[i]=p*1.0+p*OOXX=p*OX;

OX:就是期望x^3的差,也就是(x+1)^3=x^3+3*x^2+3*x+1.0,中的3*x^2+3*x+1.0,这样我们要维护x^2以及x注意这里的x^2和x是指结尾的长度x

#include<cstdio>
double f,p,X2,X1;
int n;
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%lf",&p);
f+=p*(3.0*X2+3.0*X1+1.0);
X2=p*(X2+2.0*X1+1.0);
X1=p*(X1+1.0);
}
printf("%.1lf",f);
}

下面给一下Easy的代码

#include<cstdio>
#include<cstring>
using namespace std;
char s[];
double ans,X,now;
int len;
int main()
{
scanf("%d%s",&len,s);
for(int i=;i<len;i++)
{
if(s[i]=='?')now=0.5;
else if(s[i]=='o')now=1.0;
else now=0.0;
ans+=now*(2.0*X+1.0);
X=now*(X+1.0);
}
printf("%.4lf",ans);
return ;
}

BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  3. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  4. BZOJ 4318 OSU! ——期望DP

    这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...

  5. [bzoj3450]Tyvj1952 Easy[概率dp]

    和之前一样考虑这个音符时x还是o,如果是x,是否是新的连续一段,对答案的贡献是多少$(a^2-{(a-1)}^2)$,然后递推就可以了. #include <bits/stdc++.h> ...

  6. bzoj 4318 OSU! - 动态规划 - 概率与期望

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  7. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  8. bzoj 4318 OSU 概率期望dp

    可以发现:f[i]转移到f[i+1]只和最后一串1的长度和平方有关, 因为如果新加的位置是1,贡献就是(x+1)^3-x^3=3x^2+3x+1,否则为0: 所以对于每一个位置,处理出期望的f,x和x ...

  9. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

随机推荐

  1. [转]App离线本地存储方案

    App离线本地存储方案 原文地址:http://ask.dcloud.net.cn/article/166 HTML5+的离线本地存储有如下多种方案:HTML5标准方案:cookie.localsto ...

  2. ctf题目writeup(1)

    2019/1/28 题目来源:爱春秋 https://www.ichunqiu.com/battalion?t=1 1. 该文件是一个音频文件: 首先打开听了一下,有短促的长的....刚开始以为是摩斯 ...

  3. redhat6.5安装oracle 11g

    1.修改操作系统核心参数 在Root用户下执行以下步骤: 1)修改用户的SHELL的限制,修改/etc/security/limits.conf文件 输入命令:vi /etc/security/lim ...

  4. 源码解析:解析掌阅X2C 框架

    前言 掌阅出品了X2C 框架,听说可以加快性能.喜欢研究源码的我,肯定要来看下是怎么回事. 作为一个开发,应该不屑于只会使用开源框架. OK,来尝试下. 项目地址: https://github.co ...

  5. vuex的使用及持久化state的方式详解

    vuex的使用及持久化state的方式详解 转载  更新时间:2018年01月23日 09:09:37   作者:baby格鲁特    我要评论 这篇文章主要介绍了vuex的使用及持久化state的方 ...

  6. js复制粘贴事件

    一.相应的事件 copy: 在发生复制操作时触发. beforecut: 在发生剪切操作 前 触发. cut: 在 发生 剪切 操作 时 触发. beforepaste: 在 发生 粘贴 操作 前 触 ...

  7. Mac下用tomcat搭建下载服务器

    1.下载tomcat 去官方网址: http://tomcat.apache.org/ 下载最新版 2.下载解压后,自己可以随便放在哪个文件夹下,自己记得路径即可.比如Users/你的用户名/Docu ...

  8. Kotlin怎样使用Android的Dagger2

    作者:Antonio Leiva 时间:Apr 11, 2017 原文链接:https://antonioleiva.com/dagger-android-kotlin/ 在Android上,创建去耦 ...

  9. 游戏测试中遇到的奇葩bug(不断整理中...)

    1:跨服组织战中,不同服务器相同组织ID的敌对玩家不能造成伤害. 2:节日活动24点开启,角色不下线自然过渡到活动开启,界面显示异常 3:前端请求数据之后,不管是否接收到后端返回的数据,只要玩家点击仙 ...

  10. 深度学习anchor的理解

    摘抄与某乎 anchor 让网络学习到的是一种推断的能力.网络不会认为它拿到的这一小块 feature map 具有七十二变的能力,能同时从 9 种不同的 anchor 区域得到.拥有 anchor ...