BZOJ1787 [Ahoi2008]Meet 紧急集合 【LCA】
1787: [Ahoi2008]Meet 紧急集合
Time Limit: 20 Sec Memory Limit: 162 MB
Submit: 3578 Solved: 1635
[Submit][Status][Discuss]
Description

Input

Output

Sample Input
1 2
2 3
2 4
4 5
5 6
4 5 6
6 3 1
2 4 4
6 6 6
Sample Output
5 2
2 5
4 1
6 0
HINT

点很少,只有三个,画一下图,手动模拟一下就会发现:我们要求的就是画一条线将三个点连起来,使线最短
由于树路径的唯一性,连接三个点的路径是唯一的,但是由于走法的不同会导致因为重复部分路径而使路径增长
未使路径最短,我们就不能走复路,所以我们只需求出三者最大的LCA,再将另外一个点走上LCA所在路径就好了
如图:
具体LCA用倍增实现,复杂度O(mlogn + nlogn),一个是预处理,一个是询问
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 500005,maxm = 1000005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int dep[maxn],fa[maxn][20];
int N,M,head[maxn],nedge = 0,p[4];
struct node{int lca,u,v;}e[4];
struct EDGE{int to,next;}edge[maxm];
inline void build(int u,int v){
edge[nedge] = (EDGE){v,head[u]}; head[u] = nedge++;
edge[nedge] = (EDGE){u,head[v]}; head[v] = nedge++;
}
void dfs(int u,int f,int d){
dep[u] = ++d; fa[u][0] = f;
Redge(u) if (edge[k].to != f) dfs(edge[k].to,u,d);
}
void init(){REP(j,19) REP(i,N) fa[i][j] = fa[fa[i][j - 1]][j - 1];}
int LCA(int u,int v){
if (dep[u] < dep[v]) u ^= v ^= u ^= v;
int d = dep[u] - dep[v];
for (int i = 0; (1 << i) <= d; i++)
if ((1 << i) & d) u = fa[u][i];
if (u == v) return u;
for (int i = 19; i >= 0; i--)
if (fa[u][i] != fa[v][i]) u = fa[u][i],v = fa[v][i];
return fa[u][0];
}
void B_Sort(){
for (int i = 1; i <= 3; i++)
for (int j = i + 1; j <= 3; j++)
if (dep[e[i].lca] > dep[e[j].lca]) swap(e[i],e[j]);
}
void solve(){
int ans,u;
while (M--){
REP(i,3) p[i] = RD();
for (int i = 1,k = 0; i < 3; i++)
for (int j = i + 1; j <= 3; j++)
e[++k].u = i,e[k].v = j,e[k].lca = LCA(p[i],p[j]);
B_Sort();
//REP(i,3) printf("%d and %d lca: %d\n",e[i].u,e[i].v,e[i].lca);
REP(i,3) if (i != e[1].u && i != e[1].v) {u = p[i];break;}
ans = dep[p[e[1].u]] + dep[p[e[1].v]] + dep[u] - 2 * dep[e[1].lca] - dep[e[3].lca];
printf("%d %d\n",e[3].lca,ans);
}
}
int main(){
memset(head,-1,sizeof(head));
N = RD(); M = RD();
REP(i,N - 1) build(RD(),RD());
dfs(1,0,0); init();
solve();
return 0;
}
BZOJ1787 [Ahoi2008]Meet 紧急集合 【LCA】的更多相关文章
- BZOJ1787 [Ahoi2008]Meet 紧急集合 LCA
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1787 题意概括 有一棵节点为n个(n≤500000)的树.接下来m次询问(m≤500000),每次 ...
- bzoj1787[Ahoi2008]Meet 紧急集合&bzoj1832[AHOI2008]聚会
bzoj1787[Ahoi2008]Meet 紧急集合 bzoj1832[AHOI2008]聚会 题意: 给个树,每次给三个点,求与这三个点距离最小的点. 题解: 倍增求出两两之间的LCA后,比较容易 ...
- 【BZOJ1787】[Ahoi2008]Meet 紧急集合 LCA
[BZOJ1787][Ahoi2008]Meet 紧急集合 Description Input Output Sample Input 6 4 1 2 2 3 2 4 4 5 5 6 4 5 6 6 ...
- bzoj1787 [Ahoi2008]Meet 紧急集合
1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 2272 Solved: 1029 [Submi ...
- BZOJ 1787: [Ahoi2008]Meet 紧急集合 LCA
1787: [Ahoi2008]Meet 紧急集合 Description Input Output Sample Input 6 4 1 2 2 3 2 4 4 5 5 6 4 5 6 6 3 1 ...
- 【块状树】【LCA】bzoj1787 [Ahoi2008]Meet 紧急集合
分块LCA什么的,意外地快呢…… 就是对询问的3个点两两求LCA,若其中两组LCA相等,则答案为第三者. 然后用深度减一减什么的就求出距离了. #include<cstdio> #incl ...
- [bzoj1787][Ahoi2008]Meet 紧急集合(lca)
传送门 可以看出,三个点两两之间的lca会有一对相同,而另一个lca就是聚集点. 然后搞搞就可以求出距离了. ——代码 #include <cstdio> #include <cst ...
- BZOJ1787 [Ahoi2008]Meet 紧急集合[结论题]
location. 求到树上三点距离和最短的点及此距离. 这个不还是分类讨论题么,分两类大情况,如下图. 于是乎发现三个点对的lca中较深的那个lca是答案点.距离就是两两点对距离加起来除以2即可.这 ...
- LCA 【bzoj1787】[Ahoi2008]Meet 紧急集合
LCA [bzoj1787][Ahoi2008]Meet 紧急集合 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1787 注意到边权为一 ...
随机推荐
- Scrapy框架的初步使用
Scrapy scrapy框架是一个非常全面的爬虫框架,可以说是爬虫界的django了,里面有相当多的组件,格式化组件item,持久化组件pipeline,爬虫组件spider 首先我们要先和djan ...
- ruby File类
类方法 路径相关: File.basename(filename <, suffix>) -> string返回给定文件名 filename 的最后一部分.如果有 suffix 参数 ...
- UVA10474 Where is the Marble?【排序】
参考:https://blog.csdn.net/q547550831/article/details/51326321 #include <iostream> #include < ...
- 2019年第十届蓝桥杯C/C++程序设计本科B组省赛 E迷宫
试题 E: 迷宫 本题总分: 分 [问题描述] 下图给出了一个迷宫的平面图,其中标记为 的为障碍,标记为 的为可 以通行的地方. 迷宫的入口为左上角,出口为右下角,在迷宫中,只能从一个位置走到这 个它 ...
- matlab-罗曼诺夫斯基准则剔除粗大值
罗曼诺夫斯基准则原理 罗曼诺夫斯基准则又称 t检验准则,其特点是首先删除一个可疑的的测得值,然后按 t分布检验被剔除的测量值是否含有粗大误差 罗曼诺夫斯基准则 1)选取合适的显著度a,选择合适的数 ...
- SAPFiori
最新SAP Fiori常用事务代码持续更新中...谢谢支持 注意: 以 / 开头的事务码需要加/N或/O进入,否则进不去 SEGW: 创建Gateway Service /UI2/FLP ...
- kafka集群部署文档(转载)
原文链接:http://www.cnblogs.com/luotianshuai/p/5206662.html Kafka初识 1.Kafka使用背景 在我们大量使用分布式数据库.分布式计算集群的时候 ...
- Delphi中Templates代码模板添加注意事项
今天用Delphi中的代码模板添加一段代码,结果就是有问题,多次测试后,发现是编码需要注意. <?xml version="1.0" encoding="GB231 ...
- 高德API+.NET解决租房问题(JS相关)
在线地址:58同城品牌公寓高德搜房 Github地址:https://github.com/liguobao/58HouseSearch 知乎专栏(点赞用的):高德API+Python解决租房问题(. ...
- Bootstrap4用法
#Bootstrap4 ## 网格系统- .col- 针对所有设备- .col-sm- 平板 - 屏幕宽度等于或大于 576px- .col-md- 桌面显示器 - 屏幕宽度等于或大于 768px)- ...