Description

牛牛是一个热爱算法设计的高中生。在他设计的算法中,常常会使用带小数的数进行计算。牛牛认为,如果在 k 
进制下,一个数的小数部分是纯循环的,那么它就是美的。现在,牛牛想知道:对于已知的十进制数 n 和 m,在 
kk 进制下,有多少个数值上互不相等的纯循环小数,可以用分数 xy 表示,其中 1≤x≤n,1≤y≤m,且 x,y是整数
。一个数是纯循环的,当且仅当其可以写成以下形式:a.c1˙c2c3…cp-1cp˙其中,a 是一个整数,p≥1;对于 1
≤i≤p,ci是 kk 进制下的一位数字。例如,在十进制下,0.45454545……=0.4˙5˙是纯循环的,它可以用 5/11
、10/22 等分数表示;在十进制下,0.1666666……=0.16˙则不是纯循环的,它可以用 1/6 等分数表示。需要特
别注意的是,我们认为一个整数是纯循环的,因为它的小数部分可以表示成 0 的循环或是 k?1 的循环;而一个小
数部分非 0 的有限小数不是纯循环的。

Input

只有一行,包含三个十进制数N,M,K意义如题所述,保证 1≤n≤10^9,1≤m≤10^9,2≤k≤2000

Output

一行一个整数,表示满足条件的美的数的个数。

Sample Input

2 6 10

Sample Output

4
explanation
满足条件的数分别是:
1/1=1.0000……
1/3=0.3333……
2/1=2.0000……
2/3=0.6666……
1/1 和 2/2 虽然都是纯循环小数,但因为它们相等,因此只计数一次;同样,1/3 和 2/6 也只计数一次。

解题思路:

一个喜闻乐见的性质,只要x/y中y与k互质就好了。

所以这道题就是:

$\sum_{i=1}^{N}\sum_{j=1}^{M}\epsilon(gcd(i,j))\epsilon (gcd(j, k))$

$\sum_{j=1}^{M}\epsilon(gcd(j,k))\sum_{i=1}^{N}\epsilon(gcd(i,j))$

$\sum_{j=1}^{M}\epsilon(gcd(j,k))\sum_{i=1}^{N}\sum_{d|gcd(i,j)}\mu(d)$

$\sum_{j=1}^{M}\epsilon(gcd(j,k))\sum_{d=1}^{min(N,M)}\mu(d)\sum_{d|i}^{N}1$

$\sum_{j=1}^{M}\epsilon(gcd(j,k))\sum_{d=1}^{min(N,M)}\mu(d)\left \lfloor \frac{N}{d} \right \rfloor$

${\sum_{d=1}^{min(N,M)}\epsilon(gcd(d,k))\mu(d)\left \lfloor \frac{N}{d} \right \rfloor} \sum_{i=1}^{\left \lfloor \frac{M}{d} \right \rfloor}\epsilon(gcd(i,k))$

莫比乌斯到这里结束,现在你可以获得84分,接下来是真正的烧脑环节。

我讲的不好,可以看这位巨佬

总之,将后面那个预处理出来。

再二元递归求解整体。

代码:

 #include<map>
#include<cstdio>
#include<algorithm>
typedef long long lnt;
const int N=;
struct pos{lnt x,k;pos(lnt a,lnt b){x=a,k=b;}};
bool operator < (pos a,pos b){if(a.x!=b.x)return a.x<b.x;return a.k<b.k;}
struct Dark_map{
std::map<pos,lnt>A;
void insert(lnt x,lnt k,lnt v){A[pos(x,k)]=v;return ;}
bool hav(lnt x,lnt k){return A.find(pos(x,k))!=A.end();}
lnt val(lnt x,lnt k){return A[pos(x,k)];}
}S;
struct New_map{
std::map<lnt,lnt>A;
lnt a[N];
void insert(lnt p,lnt x){if(p<N)a[p]=x;else A[p]=x;return ;}
bool hav(lnt x){if(x<N)return true;return A.find(x)!=A.end();}
lnt val(lnt x){if(x<N)return a[x];return A[x];}
}Miu;
int prime[N];
int miu[N];
bool vis[N];
int cnt;
int n,m,k;
int twd[N];
int lst[N];
lnt f[];
int hd[];
lnt gcd(lnt a,lnt b){if(!b)return a;return gcd(b,a%b);}
void adde(int f,int t){cnt++;twd[cnt]=t;lst[cnt]=hd[f];hd[f]=cnt;return ;}
void gtp(void)
{
for(int i=;i<=k;i++)f[i]=f[i-]+(gcd(i,k)==);
for(int i=;i<=k;i++)for(int j=i;j<=k;j+=i)adde(j,i);
miu[]=,cnt=;
for(int i=;i<N;i++)
{
if(!vis[i])
{
prime[++cnt]=i;
miu[i]=-;
}
for(int j=;j<=cnt&&i*prime[j]<N;j++)
{
vis[i*prime[j]]=true;
if(i%prime[j]==)
{
miu[i*prime[j]]=;
break;
}
miu[i*prime[j]]=-miu[i];
}
}
for(int i=;i<N;i++)
Miu.insert(i,Miu.val(i-)+1ll*miu[i]);
return ;
}
lnt F(lnt x)
{
return (x/k)*f[k]+f[x%k];
}
lnt MIU(lnt x)
{
if(Miu.hav(x))
return Miu.val(x);
lnt tmp=;
for(int i=,j;i<=x;i=j+)
{
j=x/(x/i);
tmp+=1ll*(j-i+)*MIU(x/i);
}
tmp=-tmp;
Miu.insert(x,tmp);
return tmp;
}
lnt SUM(lnt Nn,lnt Kk)
{
if(S.hav(Nn,Kk))
return S.val(Nn,Kk);
lnt tmp=;
if(Nn<);
else if(Kk==)
tmp=MIU(Nn);
else{
for(int I=hd[Kk];I;I=lst[I])
{
int x=twd[I];
lnt TMP=miu[x];
if(!TMP)
continue;
tmp+=SUM(Nn/x,x);
}
}
S.insert(Nn,Kk,tmp);
return tmp;
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
gtp();
lnt ans=;
for(int i=,j;i<=n&&i<=m;i=j+)
{
j=std::min(n/(n/i),m/(m/i));
ans+=(SUM(j,k)-SUM(i-,k))*(lnt)(n/i)*F(m/i);
}
printf("%lld\n",ans);
return ;
}

BZOJ4652: [Noi2016]循环之美(莫比乌斯反演,杜教筛)的更多相关文章

  1. NOI 2016 循环之美 (莫比乌斯反演+杜教筛)

    题目大意:略 洛谷传送门 鉴于洛谷最近总崩,附上良心LOJ链接 任何形容词也不够赞美这一道神题 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{M}[gcd(i,j) ...

  2. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  3. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  4. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  5. BZOJ4652 NOI2016循环之美(莫比乌斯反演+杜教筛)

    因为要求数值不同,不妨设gcd(x,y)=1.由提示可以知道,x/y是纯循环小数的充要条件是x·klen=x(mod y).因为x和y互质,两边同除x,得klen=1(mod y).那么当且仅当k和y ...

  6. BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】

    题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10 ...

  7. 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)

    点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...

  8. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  9. [HDU 5608]Function(莫比乌斯反演 + 杜教筛)

    题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣N​f(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1N​f ...

随机推荐

  1. logsource and ALO

    1.首先配置sourcedb上的nfs服务,oggstd上挂载sourcedb的online redo和archive log的目录     oggsource上配置:  vi /etc/export ...

  2. 对OC中property的一点理解

    最近在看即将要加入的项目的代码,看到一个protocol里包含着几个property.之前没有写过类似的代码,看到这里的时候,突然疑惑了一下,发现自己对property的理解好像有点模糊.所以回家后又 ...

  3. appium 模拟实现物理按键点击

    appium自动化测试中,当确认,搜索,返回等按键通过定位点击不好实现的时候,可以借助物理按键来实现.appium支持以下物理按键模拟: 电话键 KEYCODE_CALL 拨号键 5 KEYCODE_ ...

  4. 【问题:SSH】win10使用SSH链接服务器时,提示:Host key verification failed

    异常原因:当前连接新建的验证信息与之前保存的验证信息不一致,将原来的验证信息删除就可以了. 1 使用以下命令,清空之前缓存的信息.或者直接打开C:\Users\Nolan\.ssh\known_hos ...

  5. springboot框架笔记——springboot提供的自动配置

    Springboot基本配置 spring MVC的定制配置需要我们的配置实现一个WebMvcConfigurer接口,如果实在spring环境下需要使用@EnableWebMVC注解,来开启对spr ...

  6. JVM学习心得

    出处:http://blog.csdn.net/qq_16143915/article/details/51195438 一.JAVA内存管理与GC机制 Java在JVM所虚拟出的内存环境中执行,ja ...

  7. 设置UITableViewCell高度的问题

    有非常多时候.UITableViewCell每行的高度是不固定的,须要动态设置. UITableView有个代理方法, -(CGFloat)tableView:(UITableView *)table ...

  8. 高性能网络编程 - select系统调用

         IO复用使得程序可以同一时候监听多个文件描写叙述符,比方client须要同一时候处理用户输入和网络连接,server端须要同一时候处理监听套接字和连接套接字,select系统调用可以使得我们 ...

  9. linux 下的select函数

    函数原型 /* According to POSIX.1-2001 */ #include <sys/select.h>  //头文件 /* According to earlier st ...

  10. 1.9 Python基础知识 - 数值运算

      一.数值运算 在Python中有丰富的算术运算,这使得Python在科学计算领域有着很高的地位,Python可以提供包括四则运算在内的各种算术运算. 算术运算符 运算符 含义 说明 优先级 实例 ...