luogu P3396 哈希冲突(分块?)
我们可以维护一个\(f[i][j]\)代表%\(i\)意义下得\(j\)的答案。然后维护就炸了。
先设\(x=\sqrt{n}\)然后我们发现,当\(i>x\)时我们直接暴力复杂度为\(O(x)\),然后我们对\(i\leq{x}\)的i维护\(f[i][j]\),这样询问复杂度\(O(1)\),维护复杂度\(O(x)\)。就可以通过此题了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=200100;
int n,m,a[N],f[500][500],Block;
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int main(){
n=read(),m=read();
Block=sqrt(n);
for(int i=1;i<=n;i++){
a[i]=read();
for(int j=1;j<=Block;j++){
f[j][i%j]+=a[i];
}
}
char s[3];
while(m--){
scanf("%s",s);
int x=read(),y=read();
if(s[0]=='A'){
if(x>Block){
int tmp=0;
for(int i=y;i<=n;i+=x)tmp+=a[i];
printf("%d\n",tmp);
}
else printf("%d\n",f[x][y]);
}
else{
for(int i=1;i<=Block;i++)
f[i][x%i]-=a[x],f[i][x%i]+=y;
a[x]=y;
}
}
return 0;
}
luogu P3396 哈希冲突(分块?)的更多相关文章
- 洛谷P3396 哈希冲突 (分块)
洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...
- 洛谷 P3396 哈希冲突 解题报告
P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...
- P3396 哈希冲突(思维+方块)
题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...
- 洛谷P3396 哈希冲突(分块)
传送门 题解在此,讲的蛮清楚的->这里 我就贴个代码 //minamoto #include<iostream> #include<cstdio> #include< ...
- 【Luogu】P3396哈希冲突(根号算法)
题目链接 根号算法真的是博大精深啊……明明是暴力但复杂度就是能过 这也太强了吧!!! 预处理出p<=sqrt(n)的所有情况,耗时n根n 查询: 如果p<=根n,O1查表 如果p>= ...
- 洛谷P3396 哈希冲突
分块还真是应用广泛啊...... 题意:求 解:以n0.5为界. 当p小于n0.5的时候,直接用p²大小的数组储存答案. 预处理n1.5,修改n0.5. 当p大于n0.5的时候,直接按照定义计算,复杂 ...
- luogu 3396 哈希冲突 奇怪的根号
这个题嘛开始一看实在想不出来有什么数据结构/算法可以乱搞,于是果断写了个朴素n方暴力,然后就发现luogu竟然有91分 这数据啊,也是醉了.. 想着优化优化能不能暴力卡过最后一个T掉的点,然鹅发现无耶 ...
- 洛谷P3396哈希冲突
传送门啦 非常神奇的分块大法. 这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $ 我们设数组 $ f[i][j] $ 表示 ...
- P3396 哈希冲突
很好的根号算法(这种思想好像叫根号分治?) 首先,暴力是Ο(n2)的 考虑预处理: for(p=1;p<=n;p++) //枚举模数 ans[p][i%p]+=value[i]; 看似很好但还是 ...
随机推荐
- RabbitMQ学习笔记(3)----RabbitMQ Worker的使用
1. Woker队列结构图 这里表示一个生产者生产了消息发送到队列中,但是确有两个消费者在消费同一个队列中的消息. 2. 创建一个生产者 Producer如下: package com.wangx.r ...
- 2019-03-21 Python Request InsecureRequestWarning
问题: 使用Python3 requests发送HTTPS请求,已经关闭认证(verify=False)情况下,控制台会输出以下错误: InsecureRequestWarning: Unverifi ...
- java源码之List(ArrayList,LinkList,Vertor)
1,List概括 List的框架图 (01) List 是一个接口,它继承于Collection的接口.它代表着有序的队列. (02) AbstractList 是一个抽象类,它继承于Abstract ...
- ASP.NET-AJAX.FORM提交附件失败
尝试了不少时间在AJAX.FORM提交附件,发现完全不行,经过下面的这个博客的介绍,使用ajax.form.js插件提交成功,记录一下该博文网址和结论: 相关网址:http://www.cnblogs ...
- 洛谷——P2822 组合数问题
https://www.luogu.org/problem/show?pid=2822 题目描述 组合数C_n^mCnm表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三 ...
- 洛谷 P2393 yyy loves Maths II
P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...
- cogs 2060. 除法表达式
2060. 除法表达式 ★★ 输入文件:baoquansl.in 输出文件:baoquansl.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 经过无尽的蘑菇和 ...
- tddl
淘宝根据自己的业务特点开发了TDDL(Taobao Distributed Data Layer 外号:头都大了 ?_Ob)框架,主要解决了分库分表对应用的透明化以及异构数据库之间的数据复制,它是一个 ...
- 使用iTools、PP助手清理垃圾前后文件夹对照图
1.1 documents清理前 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHl4am4=/font/5a6L5L2T/fontsize/400/fi ...
- HDU Train Problem I (STL_栈)
Problem Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot o ...