浅析[分块]qwq
首先说明这篇博客写得奇差无比
让我们理清一下为什么要打分块,在大部分情况下,线段树啊,splay,treap,主席树什么的都要比分块的效率高得多,但是在出问题的时候如果你和这些数据结构只是混的脸熟的话,一旦错误可能就会导致心态崩溃,而且调试困难(大佬:很轻松啊....)所以,分块是一个时间效率不是很高的,代码量也不是很高的数据结构,水分是可以的,在全场都是30分的情况下,你能用分块水到个60,70就是胜利,所以分块很多时候也是和STL一起用的,达到(nlogn√n)的效果吧。
原理
把一段数列1...n分成√n块,如果√n*√n<n,n++。这样能保证每一块的大小都<=√n,我不会证明,但是此时时间复杂度一般为(n√n),就可以开始水分了。
比如,在我们要解决一段100000左右的序列时,最简单的询问 (l,r)求和 给(l,r)加上一个值。
大佬A:线段树@#@@¥%@!#(啪)
大佬B:平衡树%¥……¥#%@@(啪)
大佬C:树套树@¥%@#%#……(啪)
那么身为蒟蒻的我:分块!(瑟瑟发抖)
首先让我们来讲一讲分块是什么
分块,我这里只是简单的把一段数,放到几个块里面,怎么放呢,按照某个大佬的证明,把每连续的√n个数放在一个块里的时间复杂度一般是最优的,当然有时候√n并不是最优解。
那么要怎么分呢?
首先,我们让int tmp=sqrt(n),这样就可以保证有√n块,然后如果有任何一块处于(l,r)之间,就给这个块打上标记进行操作,这样肯定是有可能会有 l和r 处在两个块中的,而且我们也不能对那两的块直接修改,就暴力修改块里面的内容。即每一次的时间复杂度大概为(3√n)。
所以我们就是要预先处理好每一块的内容,预处理大概是(n√n)的,查询大概是(1)的。
大概的建块过程如下
void build()
{
num=tmp;if(tmp*tmp<n)num++; //因为int向下取整,所以有可能tmp*tmp<n,存不了那么多的数
for(int i=;i<=num;i++)
{
l[i]=num*(i-)+;r[i]=num*i; //每一个块的左右区间
}
r[num]=n;
int s= ;
for (int i=;i<=n;i++) {if (i>r[s]) s++; belong[i]=s;} //处理出每一个数所属于的块
//...
//你要预处理的内容
}
然后查询跟上面也差不多,因题目而异。
下面贴一个静态查询最大值的代码
int query(int x,int y)
{
int ans=-;
if(belong[x]==belong[y])//在一个块内就直接暴力统计
{
for(int i=x;i<=y;i++)
ans=max(ans,ch[i]);
return ans;
}
for(int i=x;i<=r[belong[x]];i++)//统计最左边的块的情况
ans=max(ans,ch[i]);
for(int i=belong[x]+;i<=belong[y]-;i++)//中间的先于预处理好,然后每一块的情况O(1)查询
ans=max(ans,maxx[i]);
for(int i=l[belong[y]];i<=y;i++)//统计最右边的块的情况
ans=max(ans,ch[i]);
return ans;
}
所以原理大概就讲到这里吧。
现在通过一些简单的例题入门吧。
1.教主的魔法
3.哈希冲突
4.作诗
1.教主的魔法
做法分析:
分块+排序+二分
首先我们把这个题目拆开来看:
(1)要询问或给(l,r)加一个值
(2)在(l,r)区间的值是不定值,还要求的是大于等于k的数有多少
由(1)–>得尝试分块和分块的加法标记
由(2)–>得我们可以事先处理好每一块的顺序,然后找到大于等于k的第一个数,就能求出每一块的贡献值了–>sort+vector
要注意的是,当l,r处在两个不完整的块,暴力加上在排序就ok了
祝大佬AC愉快23333333
2.弹飞绵羊
做法分析:
不属于hzw的入门分块练习
这里需要我们处理出每一块中,进入某个点后,会进入下一个块的哪一个点,需要几次才能弹出块,修改时记得同时修改相应块的内容。
靠大佬自己思维了。
3.哈希冲突
做法分析:
(sqrt(),不只是分块)
(1)首先,我们先处理出sqrt()内的模数池的值,这样询问就只要o(1),预处理o(n√n)。
(2)其次,当模数大于sqrt()时,我们暴力一次的代价为o(√n)
4.作诗
做法分析:
1.我们考虑一下分块的话要每一块都保存是正偶数的数字的个数,用一个ans[i][j]保存第i块到第j块内符合条件的数字的个数,o(1)的查询,前缀和的思想
2.在最左端的最右端的用一个统计数组暴力即可
3.但是要记住最左端和最右端的数字要与整个[l,r]区间相关联,所以用一个sum[i][j]保存第[i]块第[j]种颜色的数量
5.蒲公英
做法分析:
排序+离散化+二分+区间预处理+分块
(1)读入的每一个值超过一个数组下标可以统计的范围–>离散化
(2)求众数==教主的魔法(2)的思想–>sort+vector
(3)为了更加优化时间复杂度,我们事先处理好[l,r]里面经过块的众数,然后暴力vector不完整块的中可能的众数–>区间预处理
分块qwq蒟蒻我已经没什么能教的了,大佬AK比赛愉快。
ps:(最后推荐一下黄学长的分块,大概是所有分块里面教的最好的了)「分块」数列分块入门1 – 9 by hzwer
浅析[分块]qwq的更多相关文章
- [Libre 6281] 数列分块入门 5 (分块)
水一道入门分块qwq 题面:传送门 开方基本暴力.. 如果某一个区间全部都开成1或0就打上标记全部跳过就行了 因为一个数开上个四五六次就是1了所以复杂度能过233~ code: //By Menteu ...
- 「国家集训队」Crash的数字表格
题目描述 求(对 \(20101009\) 取模,\(n,m\le10^7\) ) \[\sum_{i=1}^n\sum_{j=1}^m\operatorname{lcm}(i,j)\] 大体思路 推 ...
- 2021record
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...
- 洛谷3203 弹飞绵羊(LCT)
据说这个题当年的正解是分块qwq 根据题目所说,对于题目中的弹力系数,就相当于一条边,那么对于"跳出去"这个限制,我们可以选择建造一个新点\(n+1\)表示结束,那么每次,求一个点 ...
- 分块学习笔记qwq
我没想到居然就学到分块了...哇我还一直觉得分块听起来挺牛逼的一直想学的来着qwq(其实之前好像vjudge上有道题是用分块做的?等下放链接qwq 所以想着就写个学习笔记趴qwq 首先知道分块的时间复 ...
- 【tyvj1463】智商问题 [分块][二分查找]
Background 各种数据结构帝~各种小姊妹帝~各种一遍AC帝~ 来吧! Description 某个同学又有很多小姊妹了他喜欢聪明的小姊妹 所以经常用神奇的函数来估算小姊妹的智商他得出了自己所有 ...
- CH#46 磁力块 分块
正解:分块+bfs 解题报告: 先放个传送门,然后瞎扯淡下QAQ 突然感觉不停课大概是正确的选择QAQ 大概实在是没有天赋?明明都知道正解是分块甚至还听了下解法感觉理解了,再看一次依然没想到解法,,, ...
- CFGym101138D Strange Queries 莫队/分块
正解:莫队/分块 解题报告: 传送门 ummm这题耗了我一天差不多然后我到现在还没做完:D 而同机房的大佬用了一个小时没有就切了?大概这就是大佬和弱鸡的差距趴QAQ 然后只是大概写下思想好了因为代码我 ...
- 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块
正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...
随机推荐
- 【实战经验】64位Win7安装+32位Oracle + PL/SQL 解决方法
软件环境:64位win7.32位Oracle 10g. PL/SQL 9.0.4.1644 前言:以前开发用的都是32位系统,突然换到64位上,安装环境真的有点麻烦了,尤其对于PL/SQL只支持32位 ...
- ES6 | 关于class类 继承总结
子类必须在constructor方法中调用super方法,否则新建实例时会报错.这是因为子类没有自己的this对象,而是继承父类的this对象,然后对其进行加工.如果不调用super方法,子类就得不到 ...
- 适配器模式(Adapter):类适配器、对象适配器
适配器模式(Adapter):将一个类的接口转换成客户希望的另外一个接口.A d a p t e r 模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作. 适用场景: 1.已经存在的类的接口 ...
- uva 11584 - 字符串 dp
题目链接 一个长度1000的字符串最少划分为几个回文字符串 ---------------------------------------------------------------------- ...
- QT笔记 -- (1) .ui文件
刚开始写QT,designer用的不习惯,打开.ui文件看了一下,很容易读的xml文件,记录一下. 大体框架如下 <?xml version="1.0" encoding=& ...
- 模块 -logging
模块 -logging 一:在控制台显示:默认 import logging logging.debug("debug") logging.info("debug&quo ...
- 移动端mete设置
<!DOCTYPE html> <!-- 使用 HTML5 doctype,不区分大小写 --> <html lang="zh-cmn-Hans"&g ...
- java 模拟ajax上传图片
1.maven 引入依赖 <!-- https://mvnrepository.com/artifact/org.apache.httpcomponents/httpmime --> &l ...
- maven 安装jar包
1 下载maven: 下载路径: http://mirrors.hust.edu.cn/apache/maven/maven-3/3.5.0/binaries/apache-maven-3.5.0-b ...
- vue源码之响应式数据
分析vue是如何实现数据响应的. 前记 现在回顾一下看数据响应的原因. 之前看了vuex和vue-i18n的源码, 他们都有自己内部的vm, 也就是vue实例. 使用的都是vue的响应式数据特性及$w ...