hdu 5318 The Goddess Of The Moon 矩阵高速幂
链接:http://acm.hdu.edu.cn/showproblem.php?pid=5318
The Goddess Of The Moon
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 438 Accepted Submission(s): 150
risen together to the heavens, thus causing hardship for the people. The archer Yi shot down nine of them and was given the elixir of immortality as a reward, but he did not consume it as he did not want to gain immortality without his beloved wife Chang'e.
also a point, there are n kinds of short chains in the earth, each chain is described as a number, we can also take it as a string, the quantity of each kind of chain is infinite. The only condition that a string A connect another string B is there is a suffix
of A , equals a prefix of B, and the length of the suffix(prefix) must bigger than one(just make the joint more stable for security concern), Yi can connect some of the chains to make a long chain so that he can reach the moon, but before he connect the chains,
he wonders that how many different long chains he can make if he choose m chains from the original chains.
Each of the test case begins with two integers n, m.
(n <= 50, m <= 1e9)
The following line contains n integer numbers describe the n kinds of chains.
All the Integers are less or equal than 1e9.
2
10 50
12 1213 1212 1313231 12312413 12312 4123 1231 3 131
5 50
121 123 213 132 321
86814837
797922656Hint11 111 is different with 111 11
题意:有n个小楼梯,假设两个楼梯的 前缀等于还有一个的后缀就能够首尾相连,前缀后缀长度要大于等于2。
问m个楼梯组成。有多少种组成方法。
做法:要去重,然后judge 每一个楼梯能不能连,构造出构造矩阵。初始矩阵第一行全为1,然后矩阵高速幂。
#include <cstdio>
#include <algorithm>
#include <stdio.h>
#include <string>
#include <set>
#include <math.h>
#include <string.h>
#include <iostream>
using namespace std; #define Matr 55 //矩阵大小,注意能小就小 矩阵从1開始 所以Matr 要+1 最大能够100
#define ll __int64
struct mat//矩阵结构体。a表示内容,size大小 矩阵从1開始 但size不用加一
{
ll a[Matr][Matr];
mat()//构造函数
{
memset(a,0,sizeof(a));
}
};
int Size= 0 ;
ll mod= 1000000007; mat multi(mat m1,mat m2)//两个相等矩阵的乘法,对于稀疏矩阵。有0处不用运算的优化
{
mat ans=mat();
for(int i=1;i<=Size;i++)
for(int j=1;j<=Size;j++)
if(m1.a[i][j])//稀疏矩阵优化
for(int k=1;k<=Size;k++)
ans.a[i][k]=(ans.a[i][k]+m1.a[i][j]*m2.a[j][k])%mod; //i行k列第j项
return ans;
} mat quickmulti(mat m,ll n)//二分高速幂
{
mat ans=mat();
int i;
for(i=1;i<=Size;i++)ans.a[i][i]=1;
while(n)
{
if(n&1)ans=multi(m,ans);//奇乘偶子乘 挺好记的.
m=multi(m,m);
n>>=1;
}
return ans;
} void print(mat m)//输出矩阵信息,debug用
{
int i,j;
printf("%d\n",Size);
for(i=1;i<=Size;i++)
{
for(j=1;j<=Size;j++)
printf("%d ",m.a[i][j]);
printf("\n");
}
}
set<string> my; string str[60]; int judge(string a,string b)
{
for(int i=2;i<=a.size()&&i<=b.size();i++)
{
int flag=1;
for(int j=0;j<i;j++)
{
if(a[a.size()-i+j]!=b[j])
flag=0;
}
if(flag)
return 1;
}
return 0;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
int kk=0;
my.clear();
for(int i=0;i<n;i++)
{
string ss;
cin>>ss;
if(my.find(ss)==my.end())
{
my.insert(ss);
str[++kk]=ss;
}
}
n=kk;
if(m==0||n==0)
{
printf("0\n");
continue;
}
mat gouzao=mat(),chu=mat();//构造矩阵 初始矩阵 for(int i=1;i<=kk;i++)
{
for(int j=1;j<=kk;j++)
{
if(judge(str[i],str[j]))
gouzao.a[i][j]=1;
}
} for(int i=1;i<=kk;i++)
{
chu.a[1][i]=1;
}
Size=kk;
chu=multi(chu,quickmulti(gouzao,m-1)); __int64 ans=0;
for(int i=1;i<=kk;i++)
{
ans=(ans+chu.a[1][i])%mod;
} printf("%I64d\n",ans);
}
return 0;
}
hdu 5318 The Goddess Of The Moon 矩阵高速幂的更多相关文章
- hdu5318 The Goddess Of The Moon (矩阵高速幂优化dp)
题目:pid=5318">http://acm.hdu.edu.cn/showproblem.php?pid=5318 题意:给定n个数字串和整数m,规定若数字串s1的后缀和数字串s2 ...
- hdu 3306 Another kind of Fibonacci(矩阵高速幂)
Another kind of Fibonacci Time Limit: 3000/10 ...
- HDU 5318——The Goddess Of The Moon——————【矩阵快速幂】
The Goddess Of The Moon Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- 2015 Multi-University Training Contest 3 hdu 5318 The Goddess Of The Moon
The Goddess Of The Moon Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- hdu 5318 The Goddess Of The Moon
The Goddess Of The Moon Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- HDU 1757 A Simple Math Problem(矩阵高速幂)
题目地址:HDU 1757 最终会构造矩阵了.事实上也不难,仅仅怪自己笨..= =! f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 ...
- hdu 1757 A Simple Math Problem (矩阵高速幂)
和这一题构造的矩阵的方法同样. 须要注意的是.题目中a0~a9 与矩阵相乘的顺序. #include <iostream> #include <cstdio> #include ...
- hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)
http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...
- HDU 1575 Tr A(矩阵高速幂)
题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...
随机推荐
- HDU 2155 Matrix
Matrix Time Limit: 3000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 215 ...
- Qt之设置应用程序图标
简述 应用程序图标,通常显示在应用程序的顶层窗口的左上角,通过调用QWindow:setWindowIcon()函数来实现. 为了改变可执行程序文件本身的图标,因为它被呈现在桌面上,它必须采用另一种依 ...
- linux openssl加密文件
openssl 支持的加密算法 -aes-128-cbc -aes-128-cfb -aes-128-cfb1 -aes-128-cfb8 -aes-128-ecb -aes-128-ofb -aes ...
- poj3061 Subsequence ,尺取法
A sequence of N positive integers (10 < N < 100 000), each of them less than or equal 10000, a ...
- 关于sql中的with(nolock)
SQL Server 中的 NOLOCK 究竟是什么意思 一般用于此类语句中:select * from t with(NOLOCK) nolock是不加锁查询.能够读取被事务锁定的数据,也称为脏读. ...
- .Net MVC的学习(一)
套种间作,也挺有意思的--近来学习感悟.DRP学习的同一时候,折腾了点曾经不曾学习可是却非常多次耳闻过的东西--Asp.Net中的MVC架构模式. 一.是什么? MVC,即(Model-View-Co ...
- js判断是对象还是集合
/*============================================ 函数功能:对返回数据中的列表数据进行非空处理 ============================== ...
- nyoj--138--找球号(二)(hash+邻接表)
找球号(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 在某一国度里流行着一种游戏.游戏规则为:现有一堆球中,每个球上都有一个整数编号i(0<=i<=1 ...
- 文本编辑工具 Vim
Vim是Vi的升级版 vi和Vim的区别在于vi不会显示颜色,Vim会显示颜色 1.如果没有,可以安装 #yum install -y vim-enhanced
- sicily 1146 采药 (动规)
打代码不走心会掉坑里的.. 下边是代码: //1146.采药 //t表示总时间 //m表示草药数 //w表示采药时间 //v表示草药价值 #include <iostream> using ...