Codeforces 570D TREE REQUESTS dfs序+树状数组
题解链接:点击打开链接
题意:
给定n个点的树。m个询问
以下n-1个数给出每一个点的父节点,1是root
每一个点有一个字母
以下n个小写字母给出每一个点的字母。
以下m行给出询问:
询问形如 (u, deep) 问u点的子树中,距离根的深度为deep的全部点的字母是否能在随意排列后组成回文串,能输出Yes.
思路:dfs序,给点又一次标号,dfs进入u点的时间戳记为l[u], 离开的时间戳记为r[u], 这样对于某个点u,他的子树节点相应区间都在区间 [l[u], r[u]]内。
把距离根深度同样的点都存到vector里 D[i] 表示深度为i的全部点,在dfs时能够顺便求出。
把询问按深度排序,query[i]表示全部深度为i的询问。
接下来依照深度一层层处理。
对于第i层,把全部处于第i层的节点都更新到26个树状数组上。
然后处理询问,直接查询树状数组上有多少种字母是奇数个的。显然奇数个字母的种数要<=1
处理完第i层,就把树状数组逆向操作。相当于清空树状数组
注意的一个地方就是 询问的深度是随意的,也就是说可能超过实际树的深度,也可能比当前点的深度小。
。
所以须要初始化一下答案。。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <vector>
#include <string>
#include <time.h>
#include <math.h>
#include <iomanip>
#include <queue>
#include <stack>
#include <set>
#include <map>
const int inf = 1e9;
const double eps = 1e-8;
const double pi = acos(-1.0);
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x < 0) { putchar('-'); x = -x; }
if (x > 9) pt(x / 10);
putchar(x % 10 + '0');
}
using namespace std;
const int N = 5e5 + 100;
typedef long long ll;
typedef pair<int, int> pii;
struct BIT {
int c[N], maxn;
void init(int n) { maxn = n; memset(c, 0, sizeof c); }
inline int Lowbit(int x) { return x&(-x); }
void change(int i, int x)//i点增量为x
{
while (i <= maxn)
{
c[i] += x;
i += Lowbit(i);
}
}
int sum(int x) {//区间求和 [1,x]
int ans = 0;
for (int i = x; i >= 1; i -= Lowbit(i))
ans += c[i];
return ans;
}
int query(int l, int r) {
return sum(r) + sum(l - 1);
}
}t[26];
int n, m;
char s[N];
vector<int>G[N], D[N];
int l[N], r[N], top;
vector<pii>query[N];
bool ans[N];
void dfs(int u, int fa, int dep) {
D[dep].push_back(u);
l[u] = ++top;
for (auto v : G[u])
if (v != fa)dfs(v, u, dep + 1);
r[u] = top;
}
int main() {
rd(n); rd(m);
fill(ans, ans + m + 10, 1);
for (int i = 0; i < 26; i++) t[i].init(n);
for (int i = 2, u; i <= n; i++)rd(u), G[u].push_back(i);
top = 0;
dfs(1, 1, 1);
scanf("%s", s + 1);
for (int i = 1, u, v; i <= m; i++) {
rd(u); rd(v); query[v].push_back(pii(u, i));
}
for (int i = 1; i <= n; i++)
{
if (D[i].size() == 0)break;
for (auto v : D[i]) t[s[v] - 'a'].change(l[v], 1); for (pii Q : query[i])
{
int ou = 0;
for (int j = 0; j < 26; j++)
{
if (t[j].query(l[Q.first], r[Q.first]))
ou += t[j].query(l[Q.first], r[Q.first]) & 1;
}
ans[Q.second] = ou <= 1;
}
for (auto v : D[i]) t[s[v] - 'a'].change(l[v], -1);
}
for (int i = 1; i <= m; i++)ans[i] ? puts("Yes") : puts("No"); return 0;
}
2 seconds
256 megabytes
standard input
standard output
Roman planted a tree consisting of n vertices. Each vertex contains a lowercase English letter. Vertex 1 is
the root of the tree, each of the n - 1 remaining vertices has a parent in
the tree. Vertex is connected with its parent by an edge. The parent of vertex i is vertex pi,
the parent index is always less than the index of the vertex (i.e., pi < i).
The depth of the vertex is the number of nodes on the path from the root to v along
the edges. In particular, the depth of the root is equal to 1.
We say that vertex u is in the subtree of vertex v,
if we can get from u to v,
moving from the vertex to the parent. In particular, vertex v is in its subtree.
Roma gives you m queries, the i-th
of which consists of two numbers vi, hi.
Let's consider the vertices in the subtree vi located
at depthhi.
Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make
a palindrome, but all letters should be used.
The first line contains two integers n, m (1 ≤ n, m ≤ 500 000)
— the number of nodes in the tree and queries, respectively.
The following line contains n - 1 integers p2, p3, ..., pn —
the parents of vertices from the second to the n-th (1 ≤ pi < i).
The next line contains n lowercase English letters, the i-th
of these letters is written on vertex i.
Next m lines describe the queries, the i-th
line contains two numbers vi, hi (1 ≤ vi, hi ≤ n)
— the vertex and the depth that appear in thei-th query.
Print m lines. In the i-th
line print "Yes" (without the quotes), if in the i-th
query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).
6 5
1 1 1 3 3
zacccd
1 1
3 3
4 1
6 1
1 2
Yes
No
Yes
Yes
Yes
String s is a palindrome if reads the same from left to right and
from right to left. In particular, an empty string is a palindrome.
Clarification for the sample test.
In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".
In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d"
respectively. It is impossible to form a palindrome of them.
In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.
In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.
In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c"
and "c". We may form a palindrome "cac".
Codeforces 570D TREE REQUESTS dfs序+树状数组的更多相关文章
- Codeforces 570D TREE REQUESTS dfs序+树状数组 异或
http://codeforces.com/problemset/problem/570/D Tree Requests time limit per test 2 seconds memory li ...
- poj3321-Apple Tree(DFS序+树状数组)
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 36442 Accepted: 10894 Desc ...
- pku-3321 Apple Tree(dfs序+树状数组)
Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow ...
- POJ 3321 Apple Tree(dfs序树状数组)
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=10486 题意:一颗有n个分支的苹果树,根为1,每个分支只有一个苹果,给出n- ...
- POJ 3321:Apple Tree(dfs序+树状数组)
题目大意:对树进行m次操作,有两类操作,一种是改变一个点的权值(将0变为1,1变为0),另一种为查询以x为根节点的子树点权值之和,开始时所有点权值为1. 分析: 对树进行dfs,将树变为序列,记录每个 ...
- CodeForces 570D - Tree Requests - [DFS序+二分]
题目链接:https://codeforces.com/problemset/problem/570/D 题解: 这种题,基本上容易想到DFS序. 然后,我们如果再把所有节点分层存下来,那么显然可以根 ...
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...
随机推荐
- 循环神经网络(RNN, Recurrent Neural Networks)——无非引入了环,解决时间序列问题
摘自:http://blog.csdn.net/heyongluoyao8/article/details/48636251 不同于传统的FNNs(Feed-forward Neural Networ ...
- struts的工作流程
- 一个请求过来,走前端控制器StrutsPrepareAndExecuteFilter -前端控制器是一个过滤器,过滤器中的核心方法是doFilter(),doFilter方法中首先处 ...
- PDOHelper (原创)
class PDOHelper{ public static $db =null;// new PDO('mysql:host=192.168.1.68;dbname=test','root','12 ...
- [Oracle] Oracle终极解锁
一些ORACLE中的进程被杀掉后,状态被置为"killed",但是锁定的资源很长时间不释放,有时实在没办法,只好重启数据库.现在提供一种方法解决这种问题,那就是在ORACLE中杀不 ...
- 百度jquery公共引用地址
http://cdn.code.baidu.com/ http://apps.bdimg.com/libs/jquery/1.6.4/jquery.js http://apps.bdimg.com/l ...
- eclipse中文汉字看不清或过小的问题解决方法!!
把字体修改为 中欧字体就可以看清汉字
- javascript 的逻辑中断(短路操作)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- SQL Server-聚焦强制索引查询条件和Columnstore Index
前言 本节我们再来穿插讲讲索引知识,后续再讲数据类型中的日期类型,简短的内容,深入的理解,Always to review the basics. 强制索引查询条件 前面我们也讲了一点强制索引查询的知 ...
- mysqldump+mydumper+xtrabackup备份原理流程
mysqldump备份原理 备份的基本流程如下: 1.调用FTWRL(flush tables with read lock),全局禁止读写 2.开启快照读,获取此时的快照(仅对innodb表起作用) ...
- 时空上下文视觉跟踪(STC)
论文的关键点是对时空上下文(Spatio-Temporal Context)信息的利用.主要思想是通过贝叶斯框架对要跟踪的目标和它的局部上下文区域的时空关系进行建模,得到目标和其周围区域低级特征的统计 ...