链接

题解链接:点击打开链接

题意:

给定n个点的树。m个询问

以下n-1个数给出每一个点的父节点,1是root

每一个点有一个字母

以下n个小写字母给出每一个点的字母。

以下m行给出询问:

询问形如 (u, deep) 问u点的子树中,距离根的深度为deep的全部点的字母是否能在随意排列后组成回文串,能输出Yes.

思路:dfs序,给点又一次标号,dfs进入u点的时间戳记为l[u], 离开的时间戳记为r[u], 这样对于某个点u,他的子树节点相应区间都在区间 [l[u], r[u]]内。

把距离根深度同样的点都存到vector里 D[i] 表示深度为i的全部点,在dfs时能够顺便求出。

把询问按深度排序,query[i]表示全部深度为i的询问。

接下来依照深度一层层处理。

对于第i层,把全部处于第i层的节点都更新到26个树状数组上。

然后处理询问,直接查询树状数组上有多少种字母是奇数个的。显然奇数个字母的种数要<=1

处理完第i层,就把树状数组逆向操作。相当于清空树状数组

注意的一个地方就是 询问的深度是随意的,也就是说可能超过实际树的深度,也可能比当前点的深度小。

所以须要初始化一下答案。。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <vector>
#include <string>
#include <time.h>
#include <math.h>
#include <iomanip>
#include <queue>
#include <stack>
#include <set>
#include <map>
const int inf = 1e9;
const double eps = 1e-8;
const double pi = acos(-1.0);
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x < 0) { putchar('-'); x = -x; }
if (x > 9) pt(x / 10);
putchar(x % 10 + '0');
}
using namespace std;
const int N = 5e5 + 100;
typedef long long ll;
typedef pair<int, int> pii;
struct BIT {
int c[N], maxn;
void init(int n) { maxn = n; memset(c, 0, sizeof c); }
inline int Lowbit(int x) { return x&(-x); }
void change(int i, int x)//i点增量为x
{
while (i <= maxn)
{
c[i] += x;
i += Lowbit(i);
}
}
int sum(int x) {//区间求和 [1,x]
int ans = 0;
for (int i = x; i >= 1; i -= Lowbit(i))
ans += c[i];
return ans;
}
int query(int l, int r) {
return sum(r) + sum(l - 1);
}
}t[26];
int n, m;
char s[N];
vector<int>G[N], D[N];
int l[N], r[N], top;
vector<pii>query[N];
bool ans[N];
void dfs(int u, int fa, int dep) {
D[dep].push_back(u);
l[u] = ++top;
for (auto v : G[u])
if (v != fa)dfs(v, u, dep + 1);
r[u] = top;
}
int main() {
rd(n); rd(m);
fill(ans, ans + m + 10, 1);
for (int i = 0; i < 26; i++) t[i].init(n);
for (int i = 2, u; i <= n; i++)rd(u), G[u].push_back(i);
top = 0;
dfs(1, 1, 1);
scanf("%s", s + 1);
for (int i = 1, u, v; i <= m; i++) {
rd(u); rd(v); query[v].push_back(pii(u, i));
}
for (int i = 1; i <= n; i++)
{
if (D[i].size() == 0)break;
for (auto v : D[i]) t[s[v] - 'a'].change(l[v], 1); for (pii Q : query[i])
{
int ou = 0;
for (int j = 0; j < 26; j++)
{
if (t[j].query(l[Q.first], r[Q.first]))
ou += t[j].query(l[Q.first], r[Q.first]) & 1;
}
ans[Q.second] = ou <= 1;
}
for (auto v : D[i]) t[s[v] - 'a'].change(l[v], -1);
}
for (int i = 1; i <= m; i++)ans[i] ? puts("Yes") : puts("No"); return 0;
}
D. Tree Requests
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Roman planted a tree consisting of n vertices. Each vertex contains a lowercase English letter. Vertex 1 is
the root of the tree, each of the n - 1 remaining vertices has a parent in
the tree. Vertex is connected with its parent by an edge. The parent of vertex i is vertex pi,
the parent index is always less than the index of the vertex (i.e., pi < i).

The depth of the vertex is the number of nodes on the path from the root to v along
the edges. In particular, the depth of the root is equal to 1.

We say that vertex u is in the subtree of vertex v,
if we can get from u to v,
moving from the vertex to the parent. In particular, vertex v is in its subtree.

Roma gives you m queries, the i-th
of which consists of two numbers vihi.
Let's consider the vertices in the subtree vi located
at depthhi.
Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make
a palindrome, but all letters should be used.

Input

The first line contains two integers nm (1 ≤ n, m ≤ 500 000)
— the number of nodes in the tree and queries, respectively.

The following line contains n - 1 integers p2, p3, ..., pn —
the parents of vertices from the second to the n-th (1 ≤ pi < i).

The next line contains n lowercase English letters, the i-th
of these letters is written on vertex i.

Next m lines describe the queries, the i-th
line contains two numbers vihi (1 ≤ vi, hi ≤ n)
— the vertex and the depth that appear in thei-th query.

Output

Print m lines. In the i-th
line print "Yes" (without the quotes), if in the i-th
query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).

Sample test(s)
input
6 5
1 1 1 3 3
zacccd
1 1
3 3
4 1
6 1
1 2
output
Yes
No
Yes
Yes
Yes
Note

String s is a palindrome if reads the same from left to right and
from right to left. In particular, an empty string is a palindrome.

Clarification for the sample test.

In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".

In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d"
respectively. It is impossible to form a palindrome of them.

In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.

In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.

In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c"
and "c". We may form a palindrome "cac".

Codeforces 570D TREE REQUESTS dfs序+树状数组的更多相关文章

  1. Codeforces 570D TREE REQUESTS dfs序+树状数组 异或

    http://codeforces.com/problemset/problem/570/D Tree Requests time limit per test 2 seconds memory li ...

  2. poj3321-Apple Tree(DFS序+树状数组)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36442   Accepted: 10894 Desc ...

  3. pku-3321 Apple Tree(dfs序+树状数组)

    Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow ...

  4. POJ 3321 Apple Tree(dfs序树状数组)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=10486 题意:一颗有n个分支的苹果树,根为1,每个分支只有一个苹果,给出n- ...

  5. POJ 3321:Apple Tree(dfs序+树状数组)

    题目大意:对树进行m次操作,有两类操作,一种是改变一个点的权值(将0变为1,1变为0),另一种为查询以x为根节点的子树点权值之和,开始时所有点权值为1. 分析: 对树进行dfs,将树变为序列,记录每个 ...

  6. CodeForces 570D - Tree Requests - [DFS序+二分]

    题目链接:https://codeforces.com/problemset/problem/570/D 题解: 这种题,基本上容易想到DFS序. 然后,我们如果再把所有节点分层存下来,那么显然可以根 ...

  7. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  8. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  9. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

随机推荐

  1. Android代码宏控制方案 【转】

    本文转载自:http://blog.sina.com.cn/s/blog_769500f001017ro6.html 目前107分支上,在各项目projectConfig.mk中已添加项目宏以及客户宏 ...

  2. B1970 [Ahoi2005]Code 矿藏编码 暴力模拟

    小詹从哪整出来这么多水题?%%%这个题用栈模拟一下,然后直接暴力就行了...一开始还没想到,用的dfs,我太菜了... 题干: Description 依次对每份进行编码,得S1,S2,S3,S4.该 ...

  3. [C#] override和overload的区别

    重载应该叫overload,重写叫override:重载某个方法是在同一个类中发生的!重写是在子类中重写父类中的方法. 1.override:   父类:public virtual string T ...

  4. [Pulgin] jQuery插件之ajaxFileUpload

    一.ajaxFileUpload是一个异步上传文件的jQuery插件. 传一个不知道什么版本的上来,以后不用到处找了. 语法:$.ajaxFileUpload([options]) options参数 ...

  5. Object源码分析(一)

    刚注册博客,准备学习一下java源码,当然首先从Object看起. 介绍一下Object: Object是所有类层次结构的根,所有的类都将Object作为超类.所有的对象,包括数组,都实现了Objec ...

  6. LeetCode Weekly Contest 25

    1. 507. Perfect Number 显然小于2的都不满足(尤其是负数的情况),进一步,显然质数都不满足,所以小于4的数,直接return false. 然后依次暴力枚举判断到sqrt(n), ...

  7. YCbCr to RGB and RGB toYCbCr

    RGB => YCbCr: Y = 0.299R + 0.587G + 0.114BCb = -0.1726R - 0.3388G + 0.5114B + 128Cr = 0.5114R - 0 ...

  8. IE之css3效果兼容

    一.兼容css阴影效果(ie滤镜) 1.Shadow,阴影 .shadow { -moz-box-shadow: 3px 3px 4px #000; -webkit-box-shadow: 3px 3 ...

  9. android黑科技系列——手机端破解神器MT的内购VIP功能破解教程

    一.前言 在破解app的时候,我们现在几乎都是在PC端进行操作,但是之前bin神的MT管理器,可以在手机端直接破解,不过也有很大的局限性,但是对于一些简单的app破解没问题的.这个工具其实原理也很简单 ...

  10. Python FLask 腾讯云服务器部署

    CentOs 7.0云服务器部署Python Flask 使用: Python 2.7 Flask nginx gunicorn easy_install python-dev yum install ...