还有这种操作

ttt 最近在学习二进制, 他想知道小于等于N的数中有多少个数的二进制表示中有偶数个1。

但是他想了想觉得不够dark,于是他增加了若干次操作,每次操作会将一个区间内的0变1 , 1变0,

现在在每次操作之后,他都想知道原来的那个问题的答案。

输入格式:

第一行:一个01序列表示N的二进制表示 
第二行:操作次数 m 
接下来的m行每行两个数,表示要操作的区间。

输出格式:

输出m+1行,第一行表示初始的答案,第二行到第m+1行输出每次操作后的答案 
答案对1e9 + 7 取模

样例输入:

0
1
1 1

样例输出:

1
1

数据范围:

设 n为 N 的 位数

  • 10%, n <= 20, m <= 100
  • 30%, n <= 60, m <= 10000
  • 60%, n <= 1000, m <= 10000
  • 100%, n <= 1000000, m <= 100000

解题思路:

在看到n<=2^1000000时,我的内心是震惊的,想着或者是字典树,线段树

于是想着线段树方向想,但是怎么统计答案又成为了一个问题...

加之题目并没有说l<=r,于是这道题就愉快的爆零了

***下面是正题

我们想用一个线段树,维护每一位的翻转次数,以及每一位的答案的值

那么我们就可以用nlogn的时间建出它,并用mlogn的时间来查询。

好线段树部分讲完了

***下面是关于统计答案的

我们首先可以发现

[0,1)内有2^0=1个

[0,10)内有2^0=1个

[0,100)内有2^1=2个

[0,1000)内有2^2=4个(以上数均为二进制表示)

...

那么我们可以总结了,[0,100..00(n个0))内有2^(n-1)个数满足,此时n>=1(为什么下面会讲)

但是知道这个有什么用么?

我们想一个 1010=1000+10

答案就为[0,1000)+[0,10)+check(1010是否满足)

这个结论的证明留给读者去完成

***于是这个程序基本就成型了

注意:(1)l是可能大于r的

(2)在对于最后一位处理,需要特殊处理,否则,对于最后一位是1的数,会出现1的差别,

例如:101 如按原先方法计算,答案为2+1+check(101)=4,而正确答案是3

因此在遇到原串符合条件,且最后一位是1时,要对答案减一

 #include<bits/stdc++.h>
using namespace std;
const int N=5e6+,p=1e9+;
struct xint {int l,r;}a[N];
int val[N],sum[N],pw[N],bo[N],n[N],m,l,r;
char s[N]; bool flag;
void pushup(int rt,int len){
val[rt]=(1ll*val[rt<<]*pw[len]+val[rt<<|])%p;
sum[rt]=sum[rt<<]^sum[rt<<|];
}
void opera(int rt){
bo[rt]^=; val[rt]=((pw[a[rt].r-a[rt].l+]--val[rt])%p+p)%p;
sum[rt]=((a[rt].r-a[rt].l+)&)^sum[rt];
}
void pushdown(int rt){
if (bo[rt]) opera(rt*),opera(rt*+),bo[rt]=;
}
//--------------------------------
void build(int l,int r,int rt){
if (l>r) return; a[rt].l=l; a[rt].r=r;
if (l==r){
val[rt]=sum[rt]=n[l]; return;
}
int mid=(l+r)>>;
build(l,mid,rt<<); build(mid+,r,rt<<|);
pushup(rt,r-mid);
} void update(int l,int r,int rt){
if (l>r) return;
if (a[rt].l==l&&a[rt].r==r){
opera(rt); return;
}
int mid=(a[rt].l+a[rt].r)>>; pushdown(rt);
if(r<=mid) update(l,r,rt<<);
else if (l>mid) update(l,r,rt<<|);
else update(l,mid,rt<<),update(mid+,r,rt<<|);
pushup(rt,a[rt].r-mid);
}
int query(){
return (val[]+bool(!sum[]||flag))%p;
}
//------------------------------
int main(){
scanf("%s%d",s+,&m); int len=strlen(s+);
for (int i=len;i>=;--i) n[i]=s[i]-''; pw[]=;
for (int i=;i<=len;++i) pw[i]=pw[i-]*%p;
build(,len-,); flag=n[len]; printf("%d\n",query());
while (m--){
scanf("%d%d",&l,&r);
if (l>r) swap(l,r);
if (r==len) r--,flag^=;
update(l,r,); printf("%d\n",query());
}
}

总结:个人觉得这是一道很好的线段树题目,当然对于我这种蒟蒻,线段树还不能熟练掌握的还要加油

***虽说联赛不考

[XJOI]noip44 T3还有这种操作的更多相关文章

  1. 【翻译】MongoDB指南/CRUD操作(三)

    [原文地址]https://docs.mongodb.com/manual/ CRUD操作(三) 主要内容: 原子性和事务(Atomicity and Transactions),读隔离.一致性和新近 ...

  2. Oracle补全日志(Supplemental logging)

    Oracle补全日志(Supplemental logging)特性因其作用的不同可分为以下几种:最小(Minimal),支持所有字段(all),支持主键(primary key),支持唯一键(uni ...

  3. std::thread使用

    本文将从以下三个部分介绍C++11标准中的thread类,本文主要内容为: 启动新线程 等待线程与分离线程 线程唯一标识符 1.启动线程 线程再std::threada对象创建时启动.最简单的情况下, ...

  4. MySQL在并发场景下的问题及解决思路

    目录 1.背景 2.表锁导致的慢查询的问题 3.线上修改表结构有哪些风险? 4.一个死锁问题的分析 5.锁等待问题的分析 6.小结 1.背景 对于数据库系统来说在多用户并发条件下提高并发性的同时又要保 ...

  5. [日常] NOIP前集训日记

    写点流水账放松身心... 10.8 前一天考完NHEEE的一调考试终于可以开始集训了Orz (然后上来考试就迟到5min, GG) T1维护队列瞎贪心, 过了大样例交上去一点也不稳...T出翔只拿了5 ...

  6. CountDownLatch、CyclicBarrier和Semaphore 使用示例及原理

    备注:博客园的markDown格式支持的特别不友好.也欢迎查看我的csdn的此篇文章链接:CountDownLatch.CyclicBarrier和Semaphore 使用示例及原理 CountDow ...

  7. DB2 rollforward 命令使用详解

    DB2 rollforward 命令使用详解 原文:https://www.ibm.com/developerworks/cn/data/library/techarticles/dm-1003wuc ...

  8. 【黑金原创教程】【FPGA那些事儿-驱动篇I 】实验十四:储存模块

    实验十四比起动手笔者更加注重原理,因为实验十四要讨论的东西,不是其它而是低级建模II之一的模块类,即储存模块.接触顺序语言之际,“储存”不禁让人联想到变量或者数组,结果它们好比数据的暂存空间. . i ...

  9. Oracle Supplemental 补全日志介绍

    转. Oracle补全日志(Supplemental logging)特性因其作用的不同可分为以下几种:最小(Minimal),支持所有字段(all),支持主键(primary key),支持唯一键( ...

随机推荐

  1. I2C controller core之Bit controller(01)

    FPGA proven, AISC proven, I2C controller core from OpenCores http://opencores.org/project,i2c Bit-co ...

  2. BSGS-BabyStepGiantStep算法+拓展

    学习数学真是一件赛艇的事. BSGS名字听起来非常有意思,力拔山兮气盖世,北上广深,小步大步...算法其实更有意思,它是用来求解一个方程的 A^x ≡ B (mod P) 是不是特别眼熟,有几个式子长 ...

  3. dispatch_sync:As an optimization, this function invokes the block on the current thread when possible

    两件事情: 1.是否是一个线程: 2.queue task 的目标线程是否有未完成的task. 模型:一个线程处理当前的task还有通过gc d派发来的待执行task. 猜测: 如果目标thread上 ...

  4. grep命令总结

    grep (缩写来自Globally search a Regular Expression and Print)是一种强大的文本搜索工具,它能使用特定模式匹配(包括正则表达式)搜索文本,并默认输出匹 ...

  5. TensorFlow学习笔记----安装(1)

    在入门前,推荐一个博客链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/ Windows下tensorflow ...

  6. eas之f7

    f7控件实际上是一张单据.所以对于数据的修改实际上是需要修改单据的,是在eas中修改单据的元数据是组件.包括了f7控件,    F7是个快捷键,是某个字段符合条件的集合!    F7就是一个控件,用来 ...

  7. Full-featured Vue 评分组件

    分享一下最近写的 vue 的评分组件 Features: 支持半星.可清除.文案展示.只读.自定义颜色.自定义字符及图片等.支持 hover 的时候改变 value.内置三种样式,以及非常好看 DEM ...

  8. 论vue项目api相关代码的组织方式

    论vue项目api相关代码的组织方式 看了下项目组同事的代码,发现不同项目有不同的组织版本 版本一: ├─apis │ a.api.js │ b.api.js │ b.api.js │ d.api.j ...

  9. react 父组件 向 子组件 传值

    父组件 import React, { Component } from 'react'; import Test from './component/test'; //声明welcome组件 cla ...

  10. Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)

    手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学 ...