[转]opencv学习资料
转自:http://blog.csdn.net/poem_qianmo/article/details/20537737
1:Mat imread(const string& filename, intflags=1 );
eg:
- Mat image0=imread("dota.jpg",CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR);//载入最真实的图像
- ge1=imread("dota.jpg",0);//载入灰度图
- Mat image2=imread("dota.jpg",199);//载入3通道的彩色图像
- Mat logo=imread("dota_logo.jpg");//载入3通道的彩色图像
- 第一个参数,const string&类型的trackbarname,表示轨迹条的名字,用来代表我们创建的轨迹条。
- 第二个参数,const string&类型的winname,填窗口的名字,表示这个轨迹条会依附到哪个窗口上,即对应namedWindow()创建窗口时填的某一个窗口名。
- 第三个参数,int* 类型的value,一个指向整型的指针,表示滑块的位置。并且在创建时,滑块的初始位置就是该变量当前的值。
- 第四个参数,int类型的count,表示滑块可以达到的最大位置的值。PS:滑块最小的位置的值始终为0。
- 第五个参数,TrackbarCallback类型的onChange,首先注意他有默认值0。这是一个指向回调函数的指针,每次滑块位置改变时,这个函数都会进行回调。并且这个函数的原型必须为void XXXX(int,void*);其中第一个参数是轨迹条的位置,第二个参数是用户数据(看下面的第六个参数)。如果回调是NULL指针,表示没有回调函数的调用,仅第三个参数value有变化。
- 第六个参数,void*类型的userdata,他也有默认值0。这个参数是用户传给回调函数的数据,用来处理轨迹条事件。如果使用的第三个参数value实参是全局变量的话,完全可以不去管这个userdata参数。
- ******************************************************************************************************************************
- Size(5, 5);//构造出的Size宽度和高度都为5,即XXX.width和XXX.height都为5
参数详解:
- 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。该函数对通道是独立处理的,且可以处理任意通道数的图片,但需要注意,待处理的图片深度应该为CV_8U, CV_16U, CV_16S, CV_32F 以及 CV_64F之一。
- 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
- 第三个参数,int类型的ddepth,输出图像的深度,-1代表使用原图深度,即src.depth()。
- 第四个参数,Size类型(对Size类型稍后有讲解)的ksize,内核的大小。一般这样写Size( w,h )来表示内核的大小( 其中,w 为像素宽度, h为像素高度)。Size(3,3)就表示3x3的核大小,Size(5,5)就表示5x5的核大小
- 第五个参数,Point类型的anchor,表示锚点(即被平滑的那个点),注意他有默认值Point(-1,-1)。如果这个点坐标是负值的话,就表示取核的中心为锚点,所以默认值Point(-1,-1)表示这个锚点在核的中心。
- 第六个参数,bool类型的normalize,默认值为true,一个标识符,表示内核是否被其区域归一化(normalized)了。
- 第七个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。有默认值BORDER_DEFAULT,我们一般不去管它
2:均值滤波
- 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。该函数对通道是独立处理的,且可以处理任意通道数的图片,但需要注意,待处理的图片深度应该为CV_8U, CV_16U, CV_16S, CV_32F 以及 CV_64F之一。
- 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。比如可以用Mat::Clone,以源图片为模板,来初始化得到如假包换的目标图。
- 第三个参数,Size类型(对Size类型稍后有讲解)的ksize,内核的大小。一般这样写Size( w,h )来表示内核的大小( 其中,w 为像素宽度, h为像素高度)。Size(3,3)就表示3x3的核大小,Size(5,5)就表示5x5的核大小
- 第四个参数,Point类型的anchor,表示锚点(即被平滑的那个点),注意他有默认值Point(-1,-1)。如果这个点坐标是负值的话,就表示取核的中心为锚点,所以默认值Point(-1,-1)表示这个锚点在核的中心。
- 第五个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。有默认值BORDER_DEFAULT,我们一般不去管它
- 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。它可以是单独的任意通道数的图片,但需要注意,图片深度应该为CV_8U,CV_16U, CV_16S, CV_32F 以及 CV_64F之一。
- 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。比如可以用Mat::Clone,以源图片为模板,来初始化得到如假包换的目标图。
- 第三个参数,Size类型的ksize高斯内核的大小。其中ksize.width和ksize.height可以不同,但他们都必须为正数和奇数。或者,它们可以是零的,它们都是由sigma计算而来。
- 第四个参数,double类型的sigmaX,表示高斯核函数在X方向的的标准偏差。
- 第五个参数,double类型的sigmaY,表示高斯核函数在Y方向的的标准偏差。若sigmaY为零,就将它设为sigmaX,如果sigmaX和sigmaY都是0,那么就由ksize.width和ksize.height计算出来。
- 为了结果的正确性着想,最好是把第三个参数Size,第四个参数sigmaX和第五个参数sigmaY全部指定到。
- 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。有默认值BORDER_DEFAULT,我们一般不去管它。
参数详解:
- 第一个参数,InputArray类型的src,函数的输入参数,填1、3或者4通道的Mat类型的图像;当ksize为3或者5的时候,图像深度需为CV_8U,CV_16U,或CV_32F其中之一,而对于较大孔径尺寸的图片,它只能是CV_8U。
- 第二个参数,OutputArray类型的dst,即目标图像,函数的输出参数,需要和源图片有一样的尺寸和类型。我们可以用Mat::Clone,以源图片为模板,来初始化得到如假包换的目标图。
- 第三个参数,int类型的ksize,孔径的线性尺寸(aperture linear size),注意这个参数必须是大于1的奇数,比如:3,5,7,9 ...
- 第一个参数,InputArray类型的src,输入图像,即源图像,需要为8位或者浮点型单通道、三通道的图像。
- 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
- 第三个参数,int类型的d,表示在过滤过程中每个像素邻域的直径。如果这个值我们设其为非正数,那么OpenCV会从第五个参数sigmaSpace来计算出它来。
- 第四个参数,double类型的sigmaColor,颜色空间滤波器的sigma值。这个参数的值越大,就表明该像素邻域内有更宽广的颜色会被混合到一起,产生较大的半相等颜色区域。
- 第五个参数,double类型的sigmaSpace坐标空间中滤波器的sigma值,坐标空间的标注方差。他的数值越大,意味着越远的像素会相互影响,从而使更大的区域足够相似的颜色获取相同的颜色。当d>0,d指定了邻域大小且与sigmaSpace无关。否则,d正比于sigmaSpace。
- 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。
膨胀与腐蚀能实现多种多样的功能,主要如下:
- 消除噪声
- 分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。
- 寻找图像中的明显的极大值区域或极小值区域
- 求出图像的梯度
- C++: void dilate(
- InputArray src,
- OutputArray dst,
- InputArray kernel,
- Point anchor=Point(-1,-1),
- int iterations=1,
- int borderType=BORDER_CONSTANT,
- const Scalar& borderValue=morphologyDefaultBorderValue()
- );
那么,我们接下来一起看一看拉普拉斯金字塔的概念吧
- 对图像向上采样:pyrUp函数(图像尺寸加倍,图像首先在每个维度上扩大为原来的两倍,新增的行(偶数行)以0填充。然后给指定的滤波器进行卷积(实际上是一个在每个维度都扩大为原来两倍的过滤器)去估计“丢失”像素的近似值。)
- 对图像向下采样:pyrDown函数
为了获取层级为 G_i+1 的金字塔图像,我们采用如下方法:
<1>对图像G_i进行高斯内核卷积
<2>将所有偶数行和列去除
得到的图像即为G_i+1的图像,显而易见,结果图像只有原图的四分之一。通过对输入图像G_i(原始图像)不停迭代以上步骤就会得到整个金字塔。同时我们也可以看到, 向下取样会逐渐丢失图像的信息。
以上就是对图像的向下取样操作,即缩小图像。
8.2: 对图像的向上取样
如果想放大图像,则需要通过向上取样操作得到,具体做法如下:
<1>将图像在每个方向扩大为原来的两倍,新增的行和列以0填充
<2>使用先前同样的内核(乘以4)与放大后的图像卷积,获得 “新增像素”的近似值
得到的图像即为放大后的图像,但是与原来的图像相比会发觉比较模糊,因为在缩放的过程中已经丢失了一些信息,如果想在缩小和放大整个过程中减少信息的丢失,这些 数据形成了拉普拉斯金字塔。
那么,我们接下来一起看一看拉普拉斯金字塔的概念吧
****************************************************************************************************************************************************************************************
9:resize函数剖析
void resize(InputArray src,OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR)
- 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。
- 第二个参数,OutputArray类型的dst,输出图像,当其非零时,有着dsize(第三个参数)的尺寸,或者由src.size()计算出来。
- 第三个参数,Size类型的dsize,输出图像的大小
- 第四个参数,double类型的fx,沿水平轴的缩放系数,有默认值0
- 第五个参数,double类型的fy,沿垂直轴的缩放系数,有默认值0
- 第五个参数,double类型的fy,沿垂直轴的缩放系数,有默认值0
resize( )为OpenCV中专职调整图像大小的函数。
此函数将源图像精确地转换为指定尺寸的目标图像。如果源图像中设置了ROI(Region Of Interest ,感兴趣区域),那么resize( )函数会对源图像的ROI区域进行调整图 像尺寸的操作,来输出到目标图像中。若目标图像中已经设置ROI区域,不难理解resize( )将会对源图像进行尺寸调整并填充到目标图像的ROI中。
很多时候,我们并不用考虑第二个参数dst的初始图像尺寸和类型(即直接定义一个Mat类型,不用对其初始化),因为其尺寸和类型可以由src,dsize,fx和fy这其他的几个 参数来确定。
****************************************************************************************************************************************************************************************
10:pryUp函数剖析
pyrUp( )函数的作用是向上采样并模糊一张图像,说白了就是放大一张图片
void pyrUp(InputArray src, OutputArraydst, const Size& dstsize=Size(), int borderType=BORDER_DEFAULT )
- 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。
- 第二个参数,OutputArray类型的dst,输出图像,和源图片有一样的尺寸和类型。
- 第三个参数,const Size&类型的dstsize,输出图像的大小;有默认值Size(),即默认情况下,由Size(src.cols*2,src.rows*2)来进行计算,
- 第四个参数,int类型的borderType,又来了,边界模式,一般我们不用去管它。
总结一下,OpenCV中的霍夫线变换有如下三种:
<1>标准霍夫变换(StandardHough Transform,SHT),由HoughLines函数调用。
<2>多尺度霍夫变换(Multi-ScaleHough Transform,MSHT),由HoughLines函数调用。
<3>累计概率霍夫变换(ProgressiveProbabilistic Hough Transform,PPHT),由HoughLinesP函数调用。
我们可以对图像中所有的点进行上述操作. 如果两个不同点进行上述操作后得到的曲线在平面相交, 这就意味着它们通过同一条直线。
以上的说明表明,一般来说, 一条直线能够通过在平面 寻找交于一点的曲线数量来检测。而越多曲线交于一点也就意味着这个交点表示的直线由 更多的点组成. 一般来说我们可以通过设置直线上点的阈值来定义多少条曲线交于一点我们才认为检测到了一条直线。
这就是霍夫线变换要做的. 它追踪图像中每个点对应曲线间的交点. 如果交于一点的曲线的数量超过了阈值, 那么可以认为这个交点所代表的参数对在原图 像中为一条直线。
2:houghLines函数详解
我们可以用其来调用标准霍夫变换SHT和多尺度霍夫变换MSHT的OpenCV内建算法。
void HoughLines(InputArray image, OutputArray lines, double rho, double theta, int threshold, double srn=0, double stn=0 )
具体见:http://blog.csdn.net/poem_qianmo/article/details/26977557
***********************************************************************************************************************************
12:openCV角点检测之Harris角点检测
当前的图像处理领域,角点检测算法可归纳为三类:
<1>基于灰度图像的角点检测
<2>基于二值图像的角点检测
<3>基于轮廓曲线的角点检测
“如果某一点在任意方向的一个微小变动都会引起灰度很大的变化,那么我们就把它称之为角点“
另外,关于角点的具体描述可以有几种:
- 一阶导数(即灰度的梯度)的局部最大所对应的像素点;
- 两条及两条以上边缘的交点;
- 图像中梯度值和梯度方向的变化速率都很高的点;
- 角点处的一阶导数最大,二阶导数为零,指示物体边缘变化不连续的方向。
cornerHarris函数详解cornerHarris 函数用于在OpenCV中运行Harris角点检测算子处理图像。cornerHarris 函数对于每一个像素(x,y)在邻域内,计算2x2梯度的协方差矩阵
,接着它计算如下式子:
,即可以找出输出图中的局部最大值,即找出了角点。
函数原型:void cornerHarris(InputArray src,OutputArray dst, int blockSize, int ksize, double k, intborderType=BORDER_DEFAULT )
- 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可,且需为单通道8位或者浮点型图像。
- 第二个参数,OutputArray类型的dst,函数调用后的运算结果存在这里,即这个参数用于存放Harris角点检测的输出结果,和源图片有一样的尺寸和类型。
- 第三个参数,int类型的blockSize,表示邻域的大小,更多的详细信息在cornerEigenValsAndVecs()中有讲到。
- 第四个参数,int类型的ksize,表示Sobel()算子的孔径大小。
- 第五个参数,double类型的k,Harris参数。
- 第六个参数,int类型的borderType,图像像素的边界模式,注意它有默认值BORDER_DEFAULT。更详细的解释,参考borderInterpolate( )函数。
double threshold(InputArray src,OutputArray dst, double thresh, double maxval, int type)函数Threshold( ) 对单通道数组应用固定阈值操作。该函数的典型应用是对灰度图像进行阈值操作得到二值图像。(另外,compare( )函数也可以达到此目的) 或者是去掉噪声,例如过滤很小或很大象素值的图像点。
- 第一个参数,InputArray类型的src,输入数组,填单通道 , 8或32位浮点类型的Mat即可。
- 第二个参数,OutputArray类型的dst,函数调用后的运算结果存在这里,即这个参数用于存放输出结果,且和第一个参数中的Mat变量有一样的尺寸和类型。
- 第三个参数,double类型的thresh,阈值的具体值。
- 第四个参数,double类型的maxval,当第五个参数阈值类型type取 CV_THRESH_BINARY 或CV_THRESH_BINARY_INV 阈值类型时的最大值.
- 第五个参数,int类型的type,阈值类型,。threshold( )函数支持的对图像取阈值的方法由其确定,
- http://blog.csdn.net/poem_qianmo/article/details/29356187(不是特别明白里面的一些函数)
- ************************************************************************************************************************************************************************
13:重映射与SURF点检测重映射SURF点检测OpenCV中关于SURF算法的部分,常常涉及到的是SURF、SurfFeatureDetector、SurfDescriptorExtractor这三个类,这一小节我们就来对他们进行人肉,挖 挖其背景,看看他们究竟是什么来头。绘制关键点的函数:drawKeypoints( )void drawKeypoints(const Mat&image, const vector<KeyPoint>& keypoints, Mat& outImage, constScalar& color=Scalar::all(-1),int flags=DrawMatchesFlags::DEFAULT)
- 第一个参数,const Mat&类型的src,输入图像。
- 第二个参数,const vector<KeyPoint>&类型的keypoints,根据源图像得到的特征点,它是一个输出参数。
- 第三个参数,Mat&类型的outImage,输出图像,其内容取决于第五个参数标识符falgs。
- 第四个参数,const Scalar&类型的color,关键点的颜色,有默认值Scalar::all(-1)。
- 第五个参数,int类型的flags,绘制关键点的特征标识符,有默认值DrawMatchesFlags::DEFAULT。可以在如下这个结构体中选取值。
SURF检测大致代码:
Mat srcImage1 = imread("D:/TEST_GIT/test2/img/book1.jpg",1);
Mat srcImage2 = imread("D:/TEST_GIT/test2/img/book2.jpg",2);
//【2】定义需要用到的变量和类
int minHessian = 400; //定义SURF中的hessian阈值特征点检测算子
SurfFeatureDetector detector(minHessian); //定义一个SurfFeatureDetector(SURF) 特征检测类对象
std::vector<KeyPoint> keypoints_1, keypoints_2; //vector模板类是能够存放任意类型的动态数组,能够增加和压缩数据
//【3】调用detect函数检测出SURF特征关键点,保存在vector容器中
detector.detect(srcImage1, keypoints_1);
detector.detect(srcImage2, keypoints_2);
//【4】绘制特征关键点
Mat img_keypoints_1; Mat img_keypoints_2;
drawKeypoints(srcImage1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
drawKeypoints(srcImage2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
//【5】显示效果图
imshow("特征点检测效果图1", img_keypoints_1);
imshow("特征点检测效果图2", img_keypoints_2);在OpenCV中,使用SURF进行特征点描述主要是drawMatches方法和BruteForceMatcher类的运用,让我们一起来认识他们。
- C++: void drawMatches(const Mat& img1,
- constvector<KeyPoint>& keypoints1,
- const Mat& img2,
- constvector<KeyPoint>& keypoints2,
- constvector<DMatch>& matches1to2,
- Mat& outImg,
- const Scalar&matchColor=Scalar::all(-1),
- const Scalar&singlePointColor=Scalar::all(-1),
- const vector<char>&matchesMask=vector<char>(),
- intflags=DrawMatchesFlags::DEFAULT )
drawMatches用于绘制出相匹配的两个图像的关键点
- 第一个参数,const Mat&类型的img1,第一幅源图像。
- 第二个参数,const vector<KeyPoint>&类型的keypoints1,根据第一幅源图像得到的特征点,它是一个输出参数。
- 第三个参数,const Mat&类型的img2,第二幅源图像。
- 第四个参数,const vector<KeyPoint>&类型的keypoints2,根据第二幅源图像得到的特征点,它是一个输出参数。
- 第五个参数,matches1to2,第一幅图像到第二幅图像的匹配点,即表示每一个图1中的特征点都在图2中有一一对应的点、
- 第六个参数,Mat&类型的outImg,输出图像,其内容取决于第五个参数标识符falgs。
- 第七个参数,const Scalar&类型的matchColor,匹配的输出颜色,即线和关键点的颜色。它有默认值Scalar::all(-1),表示颜色是随机生成的。
- 第八个参数,const Scalar&类型的singlePointColor,单一特征点的颜色,它也有表示随机生成颜色的默认值Scalar::all(-1)。
- 第九个参数,matchesMask,确定哪些匹配是会绘制出来的掩膜,如果掩膜为空,表示所有匹配都进行绘制。
- 第十个参数,int类型的flags,特征绘制的标识符,有默认值DrawMatchesFlags::DEFAULT。可以在如下这个DrawMatchesFlags结构体中选取值:
BruteForceMatcher类源码分析
而我们用BruteForceMatcher类时用到最多的match方法,是它从DescriptorMatcher类那里的“拿来主义”。定义如下:
- //为各种描述符找到一个最佳的匹配(若掩膜为空)
- CV_WRAP void match( const Mat& queryDescriptors, const Mat&trainDescriptors,
- CV_OUTvector<DMatch>& matches, const Mat& mask=Mat() ) const;
程序利用了SURF特征的特征描述办法,其操作封装在类SurfFeatureDetector中,利用类内的detect函数可以检测出SURF特征的关键点,保存在vector容器中。第二步利用SurfDescriptorExtractor类进行特征向量的相关计算。将之前的vector变量变成向量矩阵形式保存在Mat中。最后强行匹配两幅图像的特征向量,利用了类BruteForceMatcher中的函数match。
程序的核心思想是:
- 使用 DescriptorExtractor 接口来寻找关键点对应的特征向量。detector(srcImage,keyPoints)方法
- 使用 SurfDescriptorExtractor 以及它的函数 compute 来完成特定的计算。compute(srcImage,keyPoints, descriptor)方法
- 使用 BruteForceMatcher 来匹配特征向量。match(descriptor1,descriptor2,matches)方法
- 使用函数 drawMatches 来绘制检测到的匹配点.drawMatches( srcImage1, keyPoint1, srcImage2, keyPoints2, matches, imgMatches)
[转]opencv学习资料的更多相关文章
- Opencv 学习资料集合(更新中。。。)
基础学习笔记之opencv(24):imwrite函数的使用 tornadomeet 2012-12-26 16:36 阅读:13258 评论:9 基础学习笔记之opencv(23):OpenCV坐标 ...
- opencv 学习资料
[视觉与图像]OpenCV篇:Python+OpenCV实用教程 Python+OpenCV教程15:直方图
- opencv学习资料
搜集一些基础书 数字图像处理 信号与系统 计算机视觉中的多视图几何 图像处理.分析与机器视觉 基于序列图像的视觉检测理论与方法 官网(各版本api) http://opencv.org/ opencv ...
- Python结合OpenCV学习资料
1.sunny2038的专栏 http://blog.csdn.net/sunny2038 作者建立了一个学习系列.讲得非常具体,有非常多的主要的图像处理实例. 2. https://github. ...
- opencv安装及学习资料
第一次装时win7+VS2010+opencv3.0,结果不成功,原因解压出来的没有vc10,可能新版本不在支持vc的旧版本了.所以换了VS2013+opencv3.0,比较经典的安装时VS2010+ ...
- OpenCV入门学习资料汇总
OpenCV学习文档资料 OpenCV学习:1)OpenCV中文网站——http://wiki.opencv.org.cn/index.php/%E9%A6%96%E9%A1%B5 2)python实 ...
- (转) OpenCV学习笔记大集锦 与 图像视觉博客资源2之MIT斯坦福CMU
首页 视界智尚 算法技术 每日技术 来打我呀 注册 OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的 ...
- OpenCV学习笔记(一)安装及运行第一个OpenCV程序
1.下载及安装 OpenCV是一套开源免费的图形库,主要有C/C++语言编写,官网: http://opencv.org/ .在 http://opencv.org/downloads.html 可以 ...
- iOS超全开源框架、项目和学习资料汇总--数据库、缓存处理、图像浏览、摄像照相视频音频篇
iOS超全开源框架.项目和学习资料汇总--数据库.缓存处理.图像浏览.摄像照相视频音频篇 感谢:Ming_en_long 的分享 大神超赞的集合,http://www.jianshu.com/p/f3 ...
随机推荐
- a rel=noopener
看vue-element-admin的源码的时候,看到a 标签使用 rel=noopener: 然后就很奇怪这个是干什么用的:然后百度到一篇文章,涨知识了. 个人的理解是:不加 rel=noopen ...
- idea中SVN的运用
1.1.1 上传代码时可以指定忽略一些上传目录 1.1.2 设置项目上传的路径 1.1.3 解决上传路径中包含“svn”目录问题 上传 从 SVN 服务器中检出代码到工作空间
- hdu5676 ztr loves lucky numbers(dfs)
链接 ztrloveslucky numbers 题意 定义幸运数为:只存在4和7且4和7数量相等的数,给出n,求比>=n的最小幸运数 做法 暴力搜出所有长度从2-18的幸运数,因为最多9个4, ...
- JS 20180416作业
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- BZOJ1150 [CTSC2007] 数据备份Backup 贪心_堆_神题
Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...
- HDU2516 - 取石子游戏【斐波那契博弈】
基本描述 有一堆个数为n的石子,游戏双方轮流取石子,满足: 先手不能再第一次把所有石子取完: 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间,包括1和对手取的石子数的2倍. 取最后石子的人 ...
- 训练1-Z
有一头母牛,它每年年初生一头小母牛.每头小母牛从第四个年头开始,每年年初也生一头小母牛.请编程实现在第n年的时候,共有多少头母牛? Input 输入数据由多个测试实例组成,每个测试实例占一行,包括一个 ...
- SSM知识巩固2
数据回显 1.springmvc默认对pojo数据进行回显. pojo数据传入controller方法后,springmvc自动将pojo数据放到request域,key等于pojo类型(首字母小写) ...
- NEFU 118
其实一道公式题: n!中素数i的幂为: [n/i]+[n/i^2]+[n/i^3]+[n/i^4]+...... #include <iostream> #include <cstd ...
- Qunie——自我生成程序
Qunie是一段没有输入.但输出和它本身源代码同样的程序.本文无不论什么高深技术,纯属娱乐! 近期看到wikipedia的一个词条--Quine,简单介绍部分摘录于此,并简要翻译: A quine i ...