因子和

题目描述

输入两个正整数a和b,求\(a^b\)的因子和。结果太大,只要输出它对9901的余数。

解法

基本算数定理,每一个数都可以被分解成一系列的素数的乘积,然后你可以分解出因数了。

如何求出因数和呢?我们发现是等比数列,之后我们上等比数列求和公式就好了

\[S_n = \frac{a_1 \times (1-q^n)}{1-q}=\frac{p_{i}^{c_i+1} -1}{p_i -1}
\]

其中我们可以用快速幂和逆元求出来了

#include <iostream>
#include <algorithm>
#include <queue>
#include <cstring>
#include <cstdio>
#include <cmath>
#define LL long long
using namespace std;
const LL mod = 9901;
LL ksm(LL x,LL y) {
LL z=1;
while(y) {
if(y&1) z=(z*x)%mod;
y>>=1;
x=(x*x)%mod;
}
return z%mod;
}
LL to[2],get=1;
int main() {
LL a=0,b=0,tmp,lim;
scanf("%lld%lld",&a,&b);
lim=sqrt(a);
for(LL i = 2; i <= lim; i ++) {
if(!(a%i)) {
tmp=0;
while(!(a%i)) {
a/=i;
tmp++;
}
to[1]=(tmp*b+1);
if(i%mod==1) get=get*(tmp+1)%mod;
else {
to[0]=i%mod;
get=get*(ksm(to[0],to[1])-1)*ksm(to[0]-1,mod-2)%mod;
}
}
}
if(a!=1) {
to[1]=(b+1);
if(a%mod==1)get=get*(b+1)%mod;
else {
to[0]=a%mod;
LL k=(ksm(to[0],to[1])-1)*ksm(to[0]-1,mod-2)%mod;
get=get*k%mod;
}
}
printf("%lld",get);
return 0;
}

luogu 1593 因子和的更多相关文章

  1. luogu P1593 因子和

    不要吐槽博主总做这些数论氵题 首先我们看到这种因数问题,果断质因数分解 所以当前数\(a=p_1^{k_1}*p_2^{k_2}...*p_m^{k_m}\) 可得\(a^b=p_1^{k_1*b}* ...

  2. luogu 1593

    $Answer = A ^ B $ 的因子之和 将 $A$ 进行质因数分解$A = p_1 ^ {a_1} P_2 ^ {a_2} p_3 ^ {a_3} \cdots p_k ^ {a_k}$ $A ...

  3. luogu 1593 因子和 约数+线性筛

    等比数列那里忘判项数等于 $1$ 的情况了. Code: #include <cstdio> #include <vector> #include <algorithm& ...

  4. luogu P3226 [HNOI2012]集合选数

    luogu 因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积 如果选了一个数,那么2的因子多1 ...

  5. [luogu]P3938 斐波那契[数学]

    [luogu]P3938 斐波那契 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚 ...

  6. [luogu]P3939 数颜色[二分]

    [luogu]P3939 数颜色 题目描述 小 C 的兔子不是雪白的,而是五彩缤纷的.每只兔子都有一种颜色,不同的兔子可能有 相同的颜色.小 C 把她标号从 1 到 n 的 n 只兔子排成长长的一排, ...

  7. Luogu 魔法学院杯-第二弹(萌新的第一法blog)

    虽然有点久远  还是放一下吧. 传送门:https://www.luogu.org/contest/show?tid=754 第一题  沉迷游戏,伤感情 #include <queue> ...

  8. luogu p1268 树的重量——构造,真正考验编程能力

    题目链接:http://www.luogu.org/problem/show?pid=1268#sub -------- 这道题费了我不少心思= =其实思路和标称毫无差别,但是由于不习惯ACM风格的题 ...

  9. Uva 11395 Sigma Function (因子和)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/C   题目在文末 题意:1~n (n:1~1012)中,因子 ...

随机推荐

  1. Vue组件的三种调用方式

    最近在写fj-service-system的时候,遇到了一些问题.那就是我有些组件,比如Dialog.Message这样的组件,是引入三方组件库,比如element-ui这样的,还是自己实现一个?虽然 ...

  2. (转载)android开发常见编程错误总结

    首页 › 安卓开发 › android开发 android开发常见编程错误总结 泡在网上的日子 / 文 发表于2013-09-07 13:07  第771次阅读 android,异常 0 编辑推荐:稀 ...

  3. Android一对多蓝牙连接示例APP

    一对多蓝牙连接示例,基于Google BluetoothChat修改,实现一对多聊天(一个服务端.多个客户端),类似聊天室. 主要功能: 客户端的发出的消息所有终端都能收到(由服务端转发) 客户端之间 ...

  4. hdu2819 Swap 最大匹配(难题)

    题目大意: 给定一个元素的值只有1或者0的矩阵,每次可以交换两行(列),问有没有方案使得对角线上的值都是1.题目没有限制需要交换多少次,也没限制行交换或者列交换,也没限制是主对角线还是副对角线.虽然没 ...

  5. (转载)tnsping不是内部或外部命令

    手动添加 D:\app\Administrator\product\11.2.0\client_1\bin 到系统环境变量 path里面

  6. 我的新书《计算机图形学基础(OpenGL版)》

    我的新书<计算机图形学基础(OpenGL版)>今年6月份在清华大学出版社出版了!新书与原在机械工业出版社出的<计算机图形学>相比,主要有以下不同: 1.加重OpenGL的内容, ...

  7. Installshield下如何在指定目录执行bat

    在做InstallShield中碰到这样的问题,有service.bat需要在指定的一个目录运行. 一开始在bat内写入语句: cd d:\XXXXX command1.exe command2.ex ...

  8. 【数据分析】算法+Echarts小练

    ''' 处理逻辑: 按number去处理 先遍历所有的number挨个去找有没有在列表里的,在列表里的拿出另外一个append 把number去除的列表 ''' li = [] with open(r ...

  9. nyoj252-01串

    01串 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描述 ACM的zyc在研究01串,他知道某一01串的长度,但他想知道不含有"11"子串的这种长度的0 ...

  10. [USACO08FEB]修路Making the Grade 动态规划

    对的\(n^3\)的程序调了一个月了,惊了... HSZ学oi\(\Longleftrightarrow\)闭眼学oi 要不是翻旧账还看不见.. 这是有\(n^2\)做法的. 参见LYD的书P244 ...