题面1:

题面2:

两道题除了数据范围不同,没有任何差异,两道题都可以o(n)(单调栈),o(nlog(n))(我自己的做法)解决。

解题思路1:(单调栈)

  1. 对于每个点找到右边第一个比它小的位置con1,并且找到左边第一个比它小的位置con2。
  2. 对于每个点更新答案为ans = max(ans, (con2-con1-1)*value[i])。
  3. 1的做法是两次裸的单调栈,时间复杂度为o(n)。

代码1:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//在新疆大学OJ提交需要将此处三个数组改为500010,否则会运行超时
ll a[50010];
int l[50010],r[50010];
int main(){
ios::sync_with_stdio(false);
int n;
cin >> n;
ll ans = 0;
for(int i = 1;i <= n; ++i){
cin >> a[i];
}
a[0] = a[n+1] = -1;
stack<int> s;
s.push(1);
for(int i = 2;i <= n+1; ++i){
while(s.size() and a[i] < a[s.top()]){
r[s.top()] = i;
s.pop();
}
s.push(i);
}
while(s.size()) s.pop();
s.push(n);
for(int i = n-1;i >= 0; --i){
while(s.size() and a[i] < a[s.top()]){
l[s.top()] = i;
s.pop();
}
s.push(i);
}
for(int i = 1;i <= n; ++i){
ans = max(ans, (a[i]*(r[i]-l[i]-1)));
}
cout << ans << endl;
return 0;
}

解题思路2:(拼凑段)

  1. 这是我自己瞎搞的写法,不知道算什么方法,不过大家可以看一看思路,可能什么时候就能用到了。

  2. 首先,记下输入的数字的位置,然后对这个结构体按数字从打到小排序。

  3. 遍历这个结构体数组(这时数字是从大到下的),段(一个结构体,有l,r,used三个成员变量,l指这个段的左端位置,r指这个段的右端位置)

    a. 若这个数字的原位置的左右边两个数字都已形成段,则将这两段拼成一段,具体做法是将左边段的r延长至右端,当前数字为这一段的最小值,更新ans。

    b. 若这个数字的原位置的左边形成段,右边没有形成段,则把这个数字加入到左边的段,当前数字为这一段的最小值,更新ans。

    c. 若这个数字的原位置的右边形成段,左边没有形成段,则把这个数字加入到右边的段,当前位置为这一段的最小值,更新ans。

    d. 若这个数字的原位置的左边和右边都没有形成段,则把这个数字加入到一个新的段,新的段的l和r都等于这个数字的原先位置,更新ans。

  4. 可能会想到查找左边位置所处的段和右边所处的段需要o(n)处理起来会变成o(n^2),这时候我们加一个索引数组index,index[i]表示位置为i的数字所处的段。

  5. 可能还会想到更新index需要花费o(n),处理起来会变成o(n^2),但是仔细想想我们会发现不需要更新这个段所有的index,只用更新index[l]和index[r],因为中间的在后面将不会用到。

  6. 这样算下来排序的时间复杂度是o(nlogn),处理的时间是o(n),总时间复杂度就是o(nlogn)。

  7. 可能还有人问为什么正确?排序之后先插入大的,后插入小的,会发现当前插入的这个点一定是这个点的最优情况。

代码2:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//在新疆大学OJ提交需要将此处的50010全部改为500010 //输入的数组,val为这个点的数字,idx表示原下标。
struct node{
ll val;
int idx;
}a[50010];
//段,l表示左端,r表示右端 ,k表示段的个数。
struct segment{
int l;int r;
}seg[50010];
int k = 1;
//index[i]表示第i个位置数字所处的段。
int index[50010]; int n;
bool cmp(node x,node y){
return x.val > y.val;
} int main(){
ios::sync_with_stdio(false);
int n;
cin >> n;
ll ans = 0;
for(int i = 1;i <= n; ++i){
cin >> a[i].val;
a[i].idx = i;
ans = max(ans , a[i].val);
}
sort(a+1, a+1+n, cmp);
for(int i = 1;i <= n; ++i){
int idxl = index[a[i].idx-1];
int idxr = index[a[i].idx+1];
if(idxl != 0 and idxr != 0){ //左右边都形成一段。
seg[idxl].r = seg[idxr].r;
index[seg[idxr].r] = idxl;
ans = max(ans, a[i].val*(seg[idxl].r-seg[idxl].l+1));
}else if(idxl != 0 and idxr == 0){ //左边形成段,右边未形成。
seg[idxl].r++;
index[a[i].idx] = idxl;
ans = max(ans, a[i].val*(seg[idxl].r-seg[idxl].l+1));
}else if(idxl == 0 and idxr != 0){ //右边形成段,左边未形成。
seg[idxr].l--;
index[a[i].idx] = idxr;
ans = max(ans, a[i].val*(seg[idxr].r-seg[idxr].l+1));
}else if(idxl == 0 and idxr == 0){ //左右边均未形成段。
seg[k].l = a[i].idx;
seg[k].r = a[i].idx;
index[a[i].idx] = k;
k++;
}
}
cout << ans << endl;
return 0;
}

51nod 1102 面积最大的矩形 && 新疆大学OJ 1387: B.HUAWEI's billboard 【单调栈】+【拼凑段】(o(n) 或 o(nlog(n))的更多相关文章

  1. 51nod 1102 面积最大的矩形 (单调栈)

    链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1102 思路: 首先介绍下单调栈的功能:利用单调栈,可以找到从左/ ...

  2. 51nod 1102 面积最大的矩形(单调栈)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1102 题意: 思路: 做法就是求出每个长方形向左向右所能延伸的最大距离. ...

  3. 51nod 1102 面积最大的矩形

    题目地址在这儿 求取:以某矩形g[i]为最小值的区间的左右端点,得到一个临时解.所有临时解中的最大值即为解. 求取区间的方法可以用单调栈,也可以用下面这种十分简洁的类似于递归的方法.下面这种解法求出来 ...

  4. SUST OJ 1675: Fehead的项目(单调栈)

    1675: Fehead的项目 时间限制: 1 Sec  内存限制: 128 MB提交: 41  解决: 27[提交][状态][讨论版] 题目描述 Fehead俱乐部接手了一个项目,为了统计数据,他们 ...

  5. 51nod 1158 全是1的最大子矩阵(单调栈 ,o(n*m))

    前置问题:51nod 1102 面积最大的矩形 附上链接: 51nod 1102 面积最大的矩形 这题的题解博客 需要了解的知识:单调栈,在前置问题中已经讲解. 解题思路 对每行求左边连续1的个数,得 ...

  6. 51nod 1102 单调栈

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1102 1102 面积最大的矩形 基准时间限制:1 秒 空间限制:1310 ...

  7. hdu1506 直方图中最大的矩形 单调栈入门

    hdu1506 直方图中最大的矩形 单调栈入门 直方图是由在公共基线对齐的矩形序列组成的多边形.矩形具有相同的宽度,但可能具有不同的高度.例如,左侧的数字显示了由高度为2,1,4,5,1,3,3的矩形 ...

  8. LeetCode 84 | 单调栈解决最大矩形问题

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第52篇文章,我们一起来看LeetCode第84题,Largest Rectangle in Histogram( ...

  9. XJOI 3606 最大子矩形面积/LightOJ 1083 Histogram(单调栈/笛卡尔树)

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rec ...

随机推荐

  1. Redis学习笔记(六) 基本命令:List操作

    原文链接:http://doc.redisfans.com/list/index.html lpush key value[value...] 将一个或多个value插入到列表的表头:例:lpush ...

  2. POJ 3134 Power Calculus ID-DFS +剪枝

    题意:给你个数n 让你求从x出发用乘除法最少多少步算出x^n. 思路: 一看数据范围 n<=1000 好了,,暴搜.. 但是 一开始写的辣鸡暴搜 样例只能过一半.. 大数据跑了10分钟才跑出来. ...

  3. 枚举所有排列-STL中的next_permutation

    枚举排列的常见方法有两种 一种是递归枚举 另一种是STL中的next_permutation //枚举所有排列的另一种方法就是从字典序最小排列开始,不停的调用"求下一个排列"的过程 ...

  4. Spark任务调度

    不多说,直接上干货! Spark任务调度 DAGScheduler 构建Stage—碰到shuffle就split 记录哪个RDD 或者Stage 输出被物化 重新提交shuffle 输出丢失的sta ...

  5. Redis运维时需要注意的参数

    1: 内存 Memory used_memory:859192 数据结构的空间 used_memory_rss:7634944 实占空间 mem_fragmentation_ratio:8.89 前2 ...

  6. vue项目踩坑-引入bootstrap

    1.下载jquery; npm install jquery --save-dev 2.在webpack.base.conf.js中添加如下内容: var webpack = require('web ...

  7. Java使用反射通过对象属性获取属性的值

    代码: // 通过属性获取传入对象的指定属性的值 public String getValueByPropName(Student student, String propName) { String ...

  8. 路飞学城Python-Day29(第四模块-并发编程)

    01-进程与程序的概念 并发:多进程和多线程 进程的概念:进程就是正在执行的过程,一个应用程序不是进程,只有应用程序启动以后才能说是进程,进程是一个抽象的概念,起源于操作系统 02-操作系统介绍 应用 ...

  9. fullcalendar日历插件

    https://www.helloweba.net/javascript/231.html

  10. git diff patch方法

    UNIX世界的软件开发大多都是协作式的,因此,Patch(补丁)是一个相当重要的东西,因为几乎所有的大型UNIX项目的普通贡献者,都是通过 Patch来提交代码的.作为最重要的开源项目之一,Linux ...