http://acm.hdu.edu.cn/showproblem.php?pid=1054

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8510    Accepted Submission(s): 4096

Problem Description
Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

The input file contains several data sets in text format. Each data set represents a tree with the following description:

the number of nodes
the description of each node in the following format
node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
or
node_identifier:(0)

The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

For example for the tree:

the solution is one soldier ( at the node 1).

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:

 
Sample Input
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
 
Sample Output
1
2
 
Source
 
Recommend
JGShining   |   We have carefully selected several similar problems for you:  1053 1151 1281 1142 1233 
 
矩阵跑不过去了、、
 #include <cstring>
#include <cstdio> const int N();
int n,sumedge,head[N];
struct Edge
{
int v,next;
Edge(int v=,int next=):v(v),next(next){}
}edge[];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v]);
head[v]=sumedge;
} int match[N];
bool vis[N];
bool find(int u)
{
for(int v,i=head[u];i;i=edge[i].next)
if(!vis[v=edge[i].v])
{
vis[v]=;
if(!match[v]||find(match[v]))
{
match[v]=u;
return true;
}
}
return false;
} inline void read(int &x)
{
x=; register char ch=getchar();
for(;ch>''||ch<'';) ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-'';
} int main()
{
for(;~scanf("%d",&n);)
{
int ans=;sumedge=;
for(int u,k,i=;i<n;i++)
{
read(u),read(k);
for(int v;k--;)
read(v),ins(u+,v+);
}
for(int i=;i<=n;i++)
{
if(find(i)) ans++;
memset(vis,,sizeof(vis));
}
memset(edge,,sizeof(edge));
memset(head,,sizeof(head));
memset(match,,sizeof(match));
printf("%d\n",ans>>);
}
return ;
}

HDU——T 1054 Strategic Game的更多相关文章

  1. HDU ACM 1054 Strategic Game 二分图最小顶点覆盖?树形DP

    分析:这里使用树形DP做. 1.最小顶点覆盖做法:最小顶点覆盖 == 最大匹配(双向图)/2. 2.树形DP: dp[i][0]表示i为根节点,而且该节点不放,所需的最少的点数. dp[i][1]表示 ...

  2. HDU 1054 Strategic Game(最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 题目大意:给你一棵树,选取树上最少的节点使得可以覆盖整棵树. 解题思路: 首先树肯定是二分图,因 ...

  3. HDU - 1054 Strategic Game(二分图最小点覆盖/树形dp)

    d.一颗树,选最少的点覆盖所有边 s. 1.可以转成二分图的最小点覆盖来做.不过转换后要把匹配数除以2,这个待细看. 2.也可以用树形dp c.匈牙利算法(邻接表,用vector实现): /* 用ST ...

  4. HDU 1054:Strategic Game

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. HDU 1054 Strategic Game(树形DP)

    Problem Description Bob enjoys playing computer games, especially strategic games, but sometimes he ...

  6. HDU 1054 Strategic Game(树形DP)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  7. hdu 1054 Strategic Game 经典树形DP

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. hdu 1054 Strategic Game (二分匹配)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. hdu 1054 Strategic Game(tree dp)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. 有关计数问题的DP 划分数

    有n个无差别的物品,将它们划分成不超过m组.求出划分方法数模M的余数. 输入: 3 4 10000 输出: 4(1+1+2=1+3=2+2=4) 定义:dp[i][j] = j的i划分的总数 #inc ...

  2. iOS-为方便项目开发在pch加入一些经常使用宏定义

    1.关于NSLog输出 /** * 当Xcode为Release时不输出,为Debug时输出 * * @param ... * * @return */ #ifndef __OPTIMIZE__ #d ...

  3. ADT、C和Java

    <编程导论(Java)·5 链表.数组和栈> 数据抽象使得用户程序猿在编写客户程序时,摆脱该数据类型的实现细节而只关心该数据类型的接口.在计算机科学中.有一些重要的数据抽象--数据结构,应 ...

  4. vmvare如何安装xp虚拟机

    http://jingyan.baidu.com/article/a681b0ded8e25e3b19434640.html 一直以来,许多的朋友都不熟悉怎么安装在虚拟机上装windows系统 200 ...

  5. Windows挂载NFS目录权限问题

    windows挂载Linux上的NFS后, 可能会出现没有权限打开文件的问题   解决方法: 在注册表中添加匿名用户的默认UID和GID   计算机\HKEY_LOCAL_MACHINE\SOFTWA ...

  6. 对MySQL交换分区的实践

    前言 在介绍交换分区之前,我们先了解一下 mysql 分区. 数据库的分区有两种:水平分区和垂直分区.而MySQL暂时不支持垂直分区,因此接下来说的都是水平分区.水平分区即:以行为单位对表进行分区.比 ...

  7. Java 系列之spring学习--springmvc搭建(四)

    一.建立java web 项目 二.添加jar包 spring jar包下载地址http://repo.spring.io/release/org/springframework/spring/ 2. ...

  8. 微信小程序分享朋友圈的实现思路与解决办法

    实现思路 那么既然小程序没有分享到朋友圈的api,我们怎么实现分享到朋友圈呢,下面我介绍一下实现思路. 既然没有捷径,那就走复杂一点的路线,那就是需要用户手动分享到朋友圈,问题又来了,用户手动分享的话 ...

  9. .csv文件内容分隔符

    CSV文件默认以英文逗号做为列分隔符,换行符作为行分隔符.  如果不提供网页形式只用命令行或二进制程序输出数据到CSV,只需要将数据段按,分割,行按\n分割,写入到一个.csv文件即可.  但有时字段 ...

  10. mac 调整Launchpad行列数目

    Mac调整Launchpad  行数和列数 开打Terminal终端依次输入以下三句: <1> 改变行数:defaults write com.apple.dock springboard ...