http://acm.hdu.edu.cn/showproblem.php?pid=1054

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8510    Accepted Submission(s): 4096

Problem Description
Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

The input file contains several data sets in text format. Each data set represents a tree with the following description:

the number of nodes
the description of each node in the following format
node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
or
node_identifier:(0)

The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

For example for the tree:

the solution is one soldier ( at the node 1).

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:

 
Sample Input
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
 
Sample Output
1
2
 
Source
 
Recommend
JGShining   |   We have carefully selected several similar problems for you:  1053 1151 1281 1142 1233 
 
矩阵跑不过去了、、
 #include <cstring>
#include <cstdio> const int N();
int n,sumedge,head[N];
struct Edge
{
int v,next;
Edge(int v=,int next=):v(v),next(next){}
}edge[];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v]);
head[v]=sumedge;
} int match[N];
bool vis[N];
bool find(int u)
{
for(int v,i=head[u];i;i=edge[i].next)
if(!vis[v=edge[i].v])
{
vis[v]=;
if(!match[v]||find(match[v]))
{
match[v]=u;
return true;
}
}
return false;
} inline void read(int &x)
{
x=; register char ch=getchar();
for(;ch>''||ch<'';) ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-'';
} int main()
{
for(;~scanf("%d",&n);)
{
int ans=;sumedge=;
for(int u,k,i=;i<n;i++)
{
read(u),read(k);
for(int v;k--;)
read(v),ins(u+,v+);
}
for(int i=;i<=n;i++)
{
if(find(i)) ans++;
memset(vis,,sizeof(vis));
}
memset(edge,,sizeof(edge));
memset(head,,sizeof(head));
memset(match,,sizeof(match));
printf("%d\n",ans>>);
}
return ;
}

HDU——T 1054 Strategic Game的更多相关文章

  1. HDU ACM 1054 Strategic Game 二分图最小顶点覆盖?树形DP

    分析:这里使用树形DP做. 1.最小顶点覆盖做法:最小顶点覆盖 == 最大匹配(双向图)/2. 2.树形DP: dp[i][0]表示i为根节点,而且该节点不放,所需的最少的点数. dp[i][1]表示 ...

  2. HDU 1054 Strategic Game(最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 题目大意:给你一棵树,选取树上最少的节点使得可以覆盖整棵树. 解题思路: 首先树肯定是二分图,因 ...

  3. HDU - 1054 Strategic Game(二分图最小点覆盖/树形dp)

    d.一颗树,选最少的点覆盖所有边 s. 1.可以转成二分图的最小点覆盖来做.不过转换后要把匹配数除以2,这个待细看. 2.也可以用树形dp c.匈牙利算法(邻接表,用vector实现): /* 用ST ...

  4. HDU 1054:Strategic Game

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. HDU 1054 Strategic Game(树形DP)

    Problem Description Bob enjoys playing computer games, especially strategic games, but sometimes he ...

  6. HDU 1054 Strategic Game(树形DP)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  7. hdu 1054 Strategic Game 经典树形DP

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. hdu 1054 Strategic Game (二分匹配)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. hdu 1054 Strategic Game(tree dp)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. spring datasource和mybatis的datasource来源在哪里

    配置一个数据源     spring在第三方依赖包中包含了两个数据源的实现类包,其一是Apache的DBCP,其二是 C3P0.可以在Spring配置文件中利用这两者中任何一个配置数据源.  配置一个 ...

  2. HDU 5171

    这道题本来很水,以前做过一样的,斐波那契数列,用矩阵快速幂的方法求,本来很水,以前做过很多次,为毛做的时候没想到T_T #include <iostream> #include <c ...

  3. iOS库--.a与.framework

    一.什么是库? 库是共享程序代码的方式,一般分为静态库和动态库. 二.静态库与动态库的差别? 静态库:链接时完整地拷贝至可运行文件里.被多次使用就有多份冗余拷贝. 动态库:链接时不复制.程序执行时由系 ...

  4. poj 2528 Mayor&#39;s posters 【线段树 + 离散化】

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 50643   Accepted: 14675 ...

  5. WPF Prefix 'attach' does not map to a namespace.

    这个是用附加属性时,一定要在属性前面加Path= Visibility="{Binding Path=PlacementTarget.(attach:CommonAttachedProper ...

  6. 三大表连接方式详解之Nested loop join和 Sort merge join

    在早期版本,Oracle提供的是nested-loop join,两表连接就相当于二重循环,假定两表分别有m行和n行       如果内循环是全表扫描,时间复杂度就是O(m*n)       如果内循 ...

  7. 基于nginx的最基础的TCP代理,经过测试可通!

    测试操作系统为win7,nginx版本为1.9.4. 在本机上编写java程序一个socket服务类SocketServer,监听端口为8889, (增加了一个SocketServerThread线程 ...

  8. Python 递归和二分查找

    # 二分查找l1 = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88] def two_search( ...

  9. string 去除空格

      /** * 去除空格 * @param {str} * @param {type} * type: 1-所有空格 2-前后空格 3-前空格 4-后空格 * @return {String} */ ...

  10. CentOS 7.1 下载,安装,配置

    CentOS(全称 Community Enterprise Operating System)是 RHEL 源代码再编译的产物. 2014年初,CentOS 宣布加入 Red Hat. CentOS ...