AT1145 ホリドッグ
洛谷的题解区里竟然没有O(1)做法详解……
题面就是要判断\(1+2+\dots+n\)是不是素数
很容易让人想到上面的式子事实上等于\(n(n+1)/2\)
根据质数的定义,质数只能被1和自身整除
于是我们看\(n(n+1)/2\)这个式子
把它拆开,变成\(\frac{n}{2}\times (n + 1)\)、\(\frac{n + 1}{2}\times n\)
都变成了乘积的形式对吧
如果和是质数的话,这两个式子中的某一个因子必然是1
于是我们解方程,得到\(n=1\)或\(n=2\)
然而\(n=1\)的时候和为1,不是素数
\(n=2\)的时候和是质数
综上所述,只有\(n=2\)的时候和是质数
代码略
AT1145 ホリドッグ的更多相关文章
随机推荐
- Python-基础-day2
Python环境的安装 安装Python: windows: 1.下载安装包 https://www.python.org/downloads/ 2.安装 默认安装路径:C:\pyth ...
- Tensorflow原理通用
使用 TensorFlow, 你必须明白 TensorFlow: 使用图 (graph) 来表示计算任务.在被称之为 会话 (Session) 的上下文 (context) 中执行图.使用 tenso ...
- hdu 4607 树形dp 树的直径
题目大意:给你n个点,n-1条边,将图连成一棵生成树,问你从任意点为起点,走k(k<=n)个点,至少需要走多少距离(每条边的距离是1): 思路:树形dp求树的直径r: a:若k<=r+1 ...
- [Beginning SharePoint Designer 2010]列表和库&内部内容类型
本章概要: 1.SPS如何组织管理数据 2.如何创建列表和文档库 3.如何使用视图来过滤分类,分组列表和库 4.如何创建内容类型来应用一个定义好的结构到数据和文档中
- 打造一个全命令行的Android构建系统
IDE都是给小白程序员的,大牛级别的程序员一定是命令行控,终端控,你看大牛都是使用vim,emacs 就一切搞定” 这话说的虽然有些绝对,但是也不无道理,做开发这行要想效率高,自动化还真是缺少不了命令 ...
- Ubuntu12.04 下 GTK3.xx 的安装、编译和測试
用此方法成功在UBUNTU 12.04下安装GTK 3.xxx. 一.安装 1.安装gcc/g++/gdb/make 等基本编程工具 $sudo apt-get install build-essen ...
- oracle rac下调节redo log file 文件大小
rac下调节redo log file 文件大小 (1)查看当前日志信息: select * from v$logfile; (步骤2中得路径能够在这里MEMBER列看到,redo文件名称自己命名.比 ...
- linux:共享内存
#include <sys/ipc.h> #include <sys/shm.h> #include <string.h> #include <stdio.h ...
- IOS写一个能够支持全屏的WebView
这样来写布局 一个TitleView作为顶部搜索栏: @implementation TitleView - (id)initWithFrame:(CGRect)frame { self = [sup ...
- c12---数组
// // main.c // 数组基本概念 // // Created by xiaomage on 15/6/9. // Copyright (c) 2015年 itcast. All right ...