AC Codeforces Round #499 (Div. 2) E. Border 扩展欧几里得
没想出来QAQ....QAQ....QAQ....
对于一般情况,我们知道 ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b) 时方程是一定有解的。
如果改成 ax+by=cax+by=cax+by=c 的话该方程有解当且仅当 ccc % gcd(a,b)==0gcd(a,b)==0gcd(a,b)==0 。
这个结论在大于2个个未知数的时候也是成立的,即对于:
a1x1+a2x2+a3x3+......anxn=gcd(a1,a2,a3,...an)a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}+......a_{n}x_{n}=gcd(a_{1},a_{2},a_{3}, ...a_{n})a1x1+a2x2+a3x3+......anxn=gcd(a1,a2,a3,...an) 是成立的。
在原题中,我们要求的是 a1x1+a2x2+a3x3+......anxn≡a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}+......a_{n}x_{n}\equiva1x1+a2x2+a3x3+......anxn≡ m(modm(modm(mod k)k)k) 中 mmm 的解集。
那么我们就可以先将式子转化为 a1x1+a2x2+a3x3+......anxn−bk=ma_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}+......a_{n}x_{n}-bk=ma1x1+a2x2+a3x3+......anxn−bk=m。
根据扩展欧几里得定理,mmm 存在当且仅当 mmm 是 gcd(a1...an,k)gcd(a_{1}...a_{n},k)gcd(a1...an,k) 的整数倍,我们就现将 gcd(a1...an,k)gcd(a_{1}...a_{n},k)gcd(a1...an,k) 求出,并分别乘以 2,3,4...2,3,4...2,3,4... 结果大于等于 kkk 时停止即可。
Code:
#include<cstdio>
using namespace std;
inline int gcd(int a,int b) { return b == 0 ? a : gcd(b, a % b); }
int main()
{
int n,k;
scanf("%d%d",&n,&k);
int m = k;
for(int i = 1;i <= n; ++i)
{
int a; scanf("%d",&a);
m = gcd(m, a);
}
printf("%d\n",k / m);
int cnt = 0;
while(cnt < k)
{
printf("%d ",cnt);
cnt += m;
}
return 0;
}
AC Codeforces Round #499 (Div. 2) E. Border 扩展欧几里得的更多相关文章
- Codeforces Round #499 (Div. 1)部分题解(B,C,D)
Codeforces Round #499 (Div. 1) 这场本来想和同学一起打\(\rm virtual\ contest\)的,结果有事耽搁了,之后又陆陆续续写了些,就综合起来发一篇题解. B ...
- Codeforces Round #499 (Div. 1)
Codeforces Round #499 (Div. 1) https://codeforces.com/contest/1010 为啥我\(\rm Div.1\)能\(A4\)题还是\(\rm s ...
- Codeforces Round #499 (Div. 2)
Codeforces Round #499 (Div. 2) https://codeforces.com/contest/1011 A #include <bits/stdc++.h> ...
- Codeforces Round #499 (Div. 1) F. Tree
Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...
- [codeforces 200 E Tractor College]枚举,扩展欧几里得,三分
题目出自 Codeforces Round #126 (Div. 2) 的E. 题意大致如下:给定a,b,c,s,求三个非负整数x,y,z,满足0<=x<=y<=z,ax+by+cz ...
- 【Codeforces Round #499 (Div. 2) E】Border
[链接] 我是链接,点我呀:) [题意] 给你n个数字,每个数字可以无限用,每种方案可以组成一个和,问你%k的结果有多少种不同的结果. [题解] 相当于给你一个方程 \(x_1*a_1+x_2*a_2 ...
- 7-27 Codeforces Round #499 (Div. 2)
C. Fly 链接:http://codeforces.com/group/1EzrFFyOc0/contest/1011/problem/C 题型:binary search .math. 题意:总 ...
- Codeforces Round #499 (Div. 2) Problem-A-Stages(水题纠错)
CF链接 http://codeforces.com/contest/1011/problem/A Natasha is going to fly to Mars. She needs to bui ...
- Codeforces Round #499 (Div. 2) D. Rocket题解
题目: http://codeforces.com/contest/1011/problem/D This is an interactive problem. Natasha is going to ...
随机推荐
- Java导出Excel文件的两种方法
将数据以Excel表格的形式导出:首先下载poi的jar包,导入项目中,或者使用maven仓库管理,在pom文件添加:<dependency> <groupId>org. ...
- js给文本添加行号
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- Python笔记17---------魔法方法
魔法方法也为特殊方法,即用两个下划线形成的(__方法__).自己定义的方法最好不要采用这种方式,因为这些方法会在一些特殊的情况下直接被调用. 1.第一个魔法方法:类中常用的__init__()方法:相 ...
- struct timeval和gettimeofday
struct timeval和gettimeofday() struct timeval结构体在time.h中的定义为: struct timeval { time_t tv_sec; /* Seco ...
- 训练1-P
一个矩形的面积为S,已知该矩形的边长都是整数,求所有满足条件的矩形中,周长的最小值. 例如:S = 24,那么有{1 24} {2 12} {3 8} {4 6}这4种矩形,其中{4 6}的周长最小, ...
- ZOJ 3229 Shoot the Bullet
Shoot the Bullet Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on ZJU. Origin ...
- 线程锁的机制Lock
java.util.concurrent.locks 接口Lock publci interface Lock Lock 实现提供了比使用synchronized方法和语句可获得的更加广泛的锁定操作, ...
- HDU 1757
简单的矩阵构造题,参看我前几篇的谈到的矩阵的构造法. #include <iostream> #include <cstdio> #include <cstring> ...
- Java向上转型和向下转型(附具体样例)
Java向上转型和向下转型(附具体样例) 熬夜整理的关于Java向上和向下转型的样例,很的通俗易懂哦~~~~ 一 ...
- 【数字图像处理】六.MFC空间几何变换之图像平移、镜像、旋转、缩放具体解释
本文主要讲述基于VC++6.0 MFC图像处理的应用知识,主要结合自己大三所学课程<数字图像处理>及课件进行解说,主要通过MFC单文档视图实现显示BMP图片空间几何变换.包含图像平移.图形 ...