CRAN02 - Roommate Agreement

Leonard was always sickened by how Sheldon considered himself better than him. To decide once and for all who is better among them they decided to ask each other a puzzle. Sheldon pointed out that according to Roommate Agreement Sheldon will ask first. Leonard seeing an opportunity decided that the winner will get to rewrite the Roommate Agreement.

Sheldon thought for a moment then agreed to the terms thinking that Leonard will never be able to answer right. For Leonard, Sheldon thought of a puzzle which is as follows. He gave Leonard n numbers, which can be both positive and negative. Leonard had to find the number of continuous sequence of numbers such that their sum is zero.

For example if the sequence is- 5, 2, -2, 5, -5, 9

There are 3 such sequences

2, -2

5, -5

2, -2, 5, -5

Since this is a golden opportunity for Leonard to rewrite the Roommate Agreement and get rid of Sheldon's ridiculous clauses, he can't afford to lose. So he turns to you for help. Don't let him down.

Input

First line contains T - number of test cases

Second line contains n - the number of elements in a particular test case.

Next line contain n elements, ai  (1<=i<= n) separated by spaces.

Output

The number of such sequences whose sum if zero.

Constraints

1<=t<=5

1<=n<=10^6

-10<= ai <= 10

Example

Input:

2

4

0 1 -1 0

6

5 2 -2 5 -5 9

Output:

6
3

题意

给你一个序列,里面n(10^6)个数字,问这些数字相加为0的区间有多少个

思路

看样例解释我们可以知道,可以利用前缀和来计算,a[i]=a[i]+a[i-1]这样,然后用map来存a[i]出现的次数,如果有x个a[i]出现,则说明其中存在序列和为0的情况,

并且可能的情况为1~x-1种,如果a[i]刚好=0,则还要加上当前这个。

 /*
Name: hello world.cpp
Author: AA
Description: 唯代码与你不可辜负
*/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
int main() {
int t;
cin >> t;
while(t--) {
int n;
cin >> n;
LL a[n];
map<LL, LL> cnt;
cin >> a[];
cnt[a[]]++;
for(int i = ; i < n; i++) {
cin >> a[i];
a[i] += a[i - ];
cnt[a[i]]++;
}
map<LL, LL>::iterator it;
LL ans = ;
for(it = cnt.begin(); it != cnt.end(); it++) {
if(it->first == )
ans += it->second + it->second * (it->second - ) / ;
else
ans += it->second * (it->second - ) / ;
}
cout << ans << endl;
}
return ;
}

SPOJ-CRAN02 - Roommate Agreement(前缀和)的更多相关文章

  1. SPOJ Time Limit Exceeded(高维前缀和)

    [题目链接] http://www.spoj.com/problems/TLE/en/ [题目大意] 给出n个数字c,求非负整数序列a,满足a<2^m 并且有a[i]&a[i+1]=0, ...

  2. SPOJ.TLE - Time Limit Exceeded(DP 高维前缀和)

    题目链接 \(Description\) 给定长为\(n\)的数组\(c_i\)和\(m\),求长为\(n\)的序列\(a_i\)个数,满足:\(c_i\not\mid a_i,\quad a_i\& ...

  3. SPOJ:Fibonacci Polynomial(矩阵递推&前缀和)

    Problem description. The Fibonacci numbers defined as f(n) = f(n-1) + f(n-2) where f0 = 0 and f1 = 1 ...

  4. [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)

    题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0​(n) be the number of positive diviso ...

  5. SPOJ 7258 SUBLEX 后缀数组 + 二分答案 + 前缀和

    Code: #include <cstdio> #include <algorithm> #include <cstring> #define setIO(s) f ...

  6. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  7. SPOJ REPEATS 后缀数组

    题目链接:http://www.spoj.com/problems/REPEATS/en/ 题意:首先定义了一个字符串的重复度.即一个字符串由一个子串重复k次构成.那么最大的k即是该字符串的重复度.现 ...

  8. SPOJ DISUBSTR 后缀数组

    题目链接:http://www.spoj.com/problems/DISUBSTR/en/ 题意:给定一个字符串,求不相同的子串个数. 思路:直接根据09年oi论文<<后缀数组——出来字 ...

  9. SPOJ 10628 Count on a tree(Tarjan离线LCA+主席树求树上第K小)

    COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to  ...

随机推荐

  1. luogu P4726 多项式指数函数(模板题FFT、多项式求逆、多项式对数函数)

    手动博客搬家: 本文发表于20181127 08:39:42, 原地址https://blog.csdn.net/suncongbo/article/details/84559818 题目链接: ht ...

  2. 【转载】linux中shell命令test用法和举例

    test 命令最短的定义可能是评估一个表达式:如果条件为真,则返回一个 0 值.如果表达式不为真,则返回一个大于 0 的值 — 也可以将其称为假值.检查最后所执行命令的状态的最简便方法是使用 $? 值 ...

  3. 《简明 Python 教程》笔记

    基础 字符串:python 中字符串可以用单引号.双引号和三个引号括起来,其中三个引号可以用来指定多行的字符串. print('hello'* 3) 连续打印 3 个 hello 格式化:print ...

  4. [Cypress] Get started with Cypress

    Adding Cypress to a project is a simple npm install away. We won’t need any global dependencies beyo ...

  5. solaris x86安装ORACLE 11.2.0.3软件时因SWAP不足报错: INFO: ld: fatal: mmap anon failed

    1.ORACLE软件安装到86%时报错,图忘截了.日志例如以下: /oracle/u01/app/oracle/product/11.2.0/ INFO: db_1/lib/sysliblist` - ...

  6. 18124 N皇后问题

    18124 N皇后问题 时间限制:2000MS  内存限制:65535K提交次数:0 通过次数:0 题型: 编程题   语言: G++;GCC;VC Description 有N*N的国际象棋棋盘,要 ...

  7. @RequestParam,@PathVariable等注解区别

    一.@RequestParam和@PathVariable的区别 1.@RequestParam是从uri中request后面的参数串来取得参数的 2.@PathVariable是从uri模板中取得参 ...

  8. ZOJ3629 Treasure Hunt IV(找规律,推公式)

    Treasure Hunt IV Time Limit: 2 Seconds      Memory Limit: 65536 KB Alice is exploring the wonderland ...

  9. Android4.0.4-在build.prop中添加属性的方法【转】

    本文转载自:http://blog.csdn.net/imyfriend/article/details/8939964 1.在*.rc文件中用setprop添加,例如在源码android4.0\sy ...

  10. 【NOIP 2009】 靶形数独

    [题目链接] https://www.luogu.org/problemnew/show/P1074 [算法] 搜索 + 剪枝 [代码] #include<bits/stdc++.h> u ...