**链接:****传送门 **

题意:求 N 的拆分数

思路:

  • 吐嘈:****求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 , 4 = 1 + 1 + 2 , 4 = 1 + 2 + 1 , 4 = 2 + 1 + 1 , 4 = 1 + 1 + 1 + 1,共 8 种,你没有看错,这跟普通概念上的拆分数有很大的不同,拆分数不考虑顺序,即 4 = 1 + 3 与 4 = 3 + 1 是相同的,及其坑爹,所以可以发现 N 的拆分数其实是 2^(n-1)

  • 由于 n 的范围大的可怕,直接快速幂是G了,这时候神奇的数学就起了很大的作用!不得不说数学真是美妙!真不愧是科学的基石!根据费马小定理( p 是素数 , 且 gcd( p , a ) = 1 ,则有 a^(p-1) % p = 1 )可知,MOD = 1e9 + 7 是素数,所以我们可以降幂!可以将 2 ^ n 降解为 2 ^ ( n % (MOD - 1) ),然后快速幂跑一下就 ok 了


/*************************************************************************
> File Name: hdu4704.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月22日 星期一 16时55分59秒
************************************************************************/ #include<bits/stdc++.h>
using namespace std; #define ll long long
#define mod(x) ((x)%MOD)
const int MAX_N = 100010;
const int MOD = 1e9+7; ll Trans(char* s,int mod){
ll sum = 0; int len = strlen(s);
for(int i = 0 ; i < len ; i++){
sum = ( sum*10 + s[i]- '0' ) % mod;
}
return sum;
}
ll quick_pow(ll a,ll x){
ll ret = 1;
while(x){
if(x&1) ret = ret * a % MOD;
a = a * a % MOD;
x >>= 1;
}
return ret;
}
int main(){
char s[MAX_N];
while(~scanf("%s",s)){
ll n = Trans(s,MOD-1);
ll ans = quick_pow(2,n-1);
printf("%lld\n",ans);
}
return 0;
}

HDU 4704 Sum( 费马小定理 + 快速幂 )的更多相关文章

  1. hdu 4704 Sum 费马小定理

    题目链接 求2^n%mod的值, n<=10^100000. 费马小定理 如果a, p 互质, 那么a^(p-1) = 1(mod p)  然后可以推出来a^k % p = a^(k%(p-1) ...

  2. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  3. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  4. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

  5. hdu 4704(费马小定理+快速幂取模)

    Sum                                                                                Time Limit: 2000/ ...

  6. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  7. hdu_4869(费马小定理+快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 Turn the pokers Time Limit: 2000/1000 MS (Java/O ...

  8. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  9. hdu4549(费马小定理 + 快速幂)

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...

随机推荐

  1. [MGR——Mysql的组复制之单主模式 ]详细搭建部署过程

    1,关于MySQL Group Replication   基于组的复制(Group-basedReplication)是一种被使用在容错系统中的技术.Replication-group(复制组)是由 ...

  2. HDU 4507

    数位DP. 一般是利用DFS来求数位DP了,结合了记忆化搜索.设dp[i][j][k]为前i位,并且前i位的数位和mod7为j,前i位的数字的表示数字值mod7.为什么可以这样呢?因为继续DFS下去, ...

  3. Unity 使用C/C++ 跨平台终极解决方式(PC,iOS,Android,以及支持C/C++的平台)

    PC的事实上根本不用说,毕竟C#和C++交互的文章已经够多了,当然我自觉得经过几次折腾后.差点儿全部游戏须要到的操作我都掌握了(各种传參方法,各种坑,不懂的能够留言问.尽管基本上没人看.哈哈) 废话不 ...

  4. POJ 1442 Black Box(优先队列)

    题目地址:POJ 1442 这题是用了两个优先队列,当中一个是较大优先.还有一个是较小优先. 让较大优先的队列保持k个.每次输出较大优先队列的队头. 每次取出一个数之后,都要先进行推断,假设这个数比較 ...

  5. Android下添加新的自定义键值和按键处理流程【转】

    本文转载自: Android下添加新的自定义键值和按键处理流程     说出来不怕大家笑话,我写这篇博客的原因在于前几天去一个小公司面试Android系统工程师,然后在面试的时候对方的技术总监问了我一 ...

  6. git分支演示

    https://learngitbranching.js.org https://github.com/pcottle/learnGitBranching no demo模式可以随便玩 https:/ ...

  7. Spring Boot:Exception parsing document: template="index", line 7 - column 3

    转自:https://blog.csdn.net/u010429286/article/details/75447561

  8. IPv6通讯原理(1) - 不能忽略的网卡启动过程

    本文主题:通过抓包分析,深入观察网卡启动过程的每个步骤,从而逐步掌握通讯原理.

  9. hdu2112 HDU Today 基础最短路

    这题的关键是把车站的名字转化为点的编号.我用的是map.声明一个map<string,int> st,然后按照字符串出现的次序给st赋值.例如:st[s1]=2;代表这字符串s1出现的次序 ...

  10. 【图文】Excel中vlookup函数的使用方法

    今天统计数据,用到了Excel中vlookup函数,第一次使用当然少不了百度,经过反复研究后,算是解决了问题,现整理成文档. 一.实现效果 Sheet1 Sheet2   注:上图中sheet1商品条 ...