**链接:****传送门 **

题意:求 N 的拆分数

思路:

  • 吐嘈:****求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 , 4 = 1 + 1 + 2 , 4 = 1 + 2 + 1 , 4 = 2 + 1 + 1 , 4 = 1 + 1 + 1 + 1,共 8 种,你没有看错,这跟普通概念上的拆分数有很大的不同,拆分数不考虑顺序,即 4 = 1 + 3 与 4 = 3 + 1 是相同的,及其坑爹,所以可以发现 N 的拆分数其实是 2^(n-1)

  • 由于 n 的范围大的可怕,直接快速幂是G了,这时候神奇的数学就起了很大的作用!不得不说数学真是美妙!真不愧是科学的基石!根据费马小定理( p 是素数 , 且 gcd( p , a ) = 1 ,则有 a^(p-1) % p = 1 )可知,MOD = 1e9 + 7 是素数,所以我们可以降幂!可以将 2 ^ n 降解为 2 ^ ( n % (MOD - 1) ),然后快速幂跑一下就 ok 了


/*************************************************************************
> File Name: hdu4704.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月22日 星期一 16时55分59秒
************************************************************************/ #include<bits/stdc++.h>
using namespace std; #define ll long long
#define mod(x) ((x)%MOD)
const int MAX_N = 100010;
const int MOD = 1e9+7; ll Trans(char* s,int mod){
ll sum = 0; int len = strlen(s);
for(int i = 0 ; i < len ; i++){
sum = ( sum*10 + s[i]- '0' ) % mod;
}
return sum;
}
ll quick_pow(ll a,ll x){
ll ret = 1;
while(x){
if(x&1) ret = ret * a % MOD;
a = a * a % MOD;
x >>= 1;
}
return ret;
}
int main(){
char s[MAX_N];
while(~scanf("%s",s)){
ll n = Trans(s,MOD-1);
ll ans = quick_pow(2,n-1);
printf("%lld\n",ans);
}
return 0;
}

HDU 4704 Sum( 费马小定理 + 快速幂 )的更多相关文章

  1. hdu 4704 Sum 费马小定理

    题目链接 求2^n%mod的值, n<=10^100000. 费马小定理 如果a, p 互质, 那么a^(p-1) = 1(mod p)  然后可以推出来a^k % p = a^(k%(p-1) ...

  2. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  3. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  4. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

  5. hdu 4704(费马小定理+快速幂取模)

    Sum                                                                                Time Limit: 2000/ ...

  6. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  7. hdu_4869(费马小定理+快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 Turn the pokers Time Limit: 2000/1000 MS (Java/O ...

  8. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  9. hdu4549(费马小定理 + 快速幂)

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...

随机推荐

  1. Mysql查询缓存研究

    转载声明:本文为DBA+社群原创文章,转载必须连同本订阅号二维码全文转载,并注明作者名字及来源:DBA+社群(dbaplus). http://mp.weixin.qq.com/s?__biz=MzI ...

  2. linux下apache2更换目录

    修改apache2的默认文档目录(默认是在/var/www) 修改命令:sudo gedit /etc/apache2/sites-enabled/000-default 在文档中找到 Documen ...

  3. AOJ 0121 Seven Puzzle {广度优先搜索}(*)

    原题 题意 题意是有一个输入,比方: 1 0 2 3 4 5 6 7 摆成例如以下形状: 1 0 2 3 4 5 6 7 0表示空格.其它数字能够移动到0的位置.最后须要到例如以下形状: 0 1 2 ...

  4. 開始搭建第一个zookeeper

    首先须要下载zookeeper的tar包.地址为http://zookeeper.apache.org,然后再linux中解压并编译tar包. # tar-xvzf zookeeper-3.4.5.t ...

  5. 初探BurpSuite

    BurpSuite这套渗透软件.或者已经能够说是渗透攻击平台了吧,玩的好.确实非常方便. 就像是玩英雄联盟的ADC,一開始玩VN.感觉非常难上手,玩多了肯定会爱上VN(啊,貌似提到了什么奇怪的东西). ...

  6. POJ 3080 Blue Jeans (后缀数组)

    题目大意: 求出这些DNA序列中的最长且字典序最小的公共子串. 思路分析: 二分长度的答案,去height中扫描这个长度是否满足,一旦满足就立即输出.这样就能够保证字典序最小了. #include & ...

  7. tomcat下载及启动

    http://tomcat.apache.org/ 打开网页,在左边选择版本,选择后网页往下面拉 拉下来,根据windows选择32还是64位的,其中zip是windows免安装版 下载后解压,然后配 ...

  8. 【BZOJ】2140 稳定婚姻

    [解析]Hash,离散化.Tarjan [分析] 对于每一个名字.首先离散化成编号. 用hash或者其它,反正不要最主要的即可了.否则O(N^2L)会爆掉. 然后请參考:http://www.cnbl ...

  9. HDU3535 AreYouBusy 混合背包

    题目大意 给出几组物品的体积和价值,每组分为三种:0.组内物品至少选一个:1.组内物品最多选一个:2.组内物品任意选.给出背包容量,求所能得到的最大价值. 注意 仔细审题,把样例好好看完了再答题,否则 ...

  10. 什么是URL?网址的组成

    欢迎加入前端交流群交流知识&&获取视频资料:749539640 和 Hypertext 以及 HTTP 一样,URL是Web中的一个核心概念.它是浏览器用来检索web上公布的任何资源的 ...