题目:传送门


这道题根本不用lca,也没有部分分。。。

考虑求两个点xy的lca的深度。

我们将x到树根所有点的值都加1,然后查询y到根的和,其实就是lca的深度。

所以本题离线一下上树剖乱搞就可以了。


AC代码如下:
718ms 17348Kib

 #include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm> using namespace std; namespace StandardIO { template<typename T> inline void read (T &x) {
x=;T f=;char c=getchar();
for (; c<''||c>''; c=getchar()) if (c=='-') f=-;
for (; c>=''&&c<=''; c=getchar()) x=x*+c-'';
x*=f;
}
template<typename T> inline void write (T x) {
if (x<) putchar('-'),x=-x;
if (x>=) write(x/);
putchar(x%+'');
} } using namespace StandardIO; namespace Solve { const int MOD=;
const int N=; struct Tree {
int tree[N*],tag[N*];
void pushdown (int pos,int left,int right) {
if (tag[pos]) {
int mid=(left+right)/;
tree[pos*]+=(mid-left+)*tag[pos],tree[pos*]%=MOD;
tree[pos*+]+=(right-mid)*tag[pos],tree[pos*+]%=MOD;
tag[pos*]+=tag[pos],tag[pos*+]+=tag[pos],tag[pos*]%=MOD,tag[pos*+]%=MOD;
tag[pos]=;
}
}
void pushup (int pos) {
tree[pos]=tree[pos*]+tree[pos*+],tree[pos]%=MOD;
}
void update (int pos,int left,int right,int L,int R,int add) {
if (L<=left&&right<=R) {
tree[pos]+=add*(right-left+),tree[pos]%=MOD;
tag[pos]+=add,tag[pos]%=MOD;
return;
}
pushdown(pos,left,right);
int mid=(left+right)/;
if (L<=mid) update(pos*,left,mid,L,R,add);
if (R>mid) update(pos*+,mid+,right,L,R,add);
pushup(pos);
}
int query (int pos,int left,int right,int L,int R) {
if (L<=left&&right<=R) return tree[pos];
pushdown(pos,left,right);
int mid=(left+right)/;
int ans=;
if (L<=mid) ans+=query(pos*,left,mid,L,R),ans%=MOD;
if (R>mid) ans+=query(pos*+,mid+,right,L,R),ans%=MOD;
return ans;
}
} ljz;
int n,q;
vector<int>M[N];
int dep[N],siz[N],fa[N],son[N];
int ind[N],cnt;
int top[N]; void dfs1 (int now,int father) {
dep[now]=dep[father]+,fa[now]=father,siz[now]=;
for (register vector<int>::iterator i=M[now].begin(); i!=M[now].end(); i++) {
if(*i==father) continue;
dfs1(*i,now);
siz[now]+=siz[*i];
if (siz[*i]>siz[son[now]]) son[now]=*i;
}
}
void dfs2(int now,int tp){
top[now]=tp,ind[now]=++cnt;
if (son[now]) dfs2(son[now],tp);
for (register vector<int>::iterator i=M[now].begin(); i!=M[now].end(); i++) {
if (*i==fa[now]||*i==son[now]) continue;
dfs2(*i,*i);
}
}
void upd (int x,int add){
while (x) {
ljz.update(,,n,ind[top[x]],ind[x],add);
x=fa[top[x]];
}
}
int que (int x) {
int ans=;
while (x) {
ans+=ljz.query(,,n,ind[top[x]],ind[x]),ans%=MOD;
x=fa[top[x]];
}
return ans;
}
int A[N];
struct Q{
int val,ind;
Q () {val=ind=;}
Q (int a,int b) :val(a),ind(b) {}
friend bool operator < (Q a,Q b) {
return a.val<b.val;
}
} s1[N],s2[N];
int a1=,a2=;
int Ans[N]; inline void solve () {
read(n),read(q);
for (register int i=; i<=n; i++) {
int a;
read(a);
M[a+].push_back(i);
}
dfs1(,);
dfs2(,);
for (register int i=; i<=q; i++) {
int a,b,c;
read(a),read(b),read(c);
a++,b++,c++;
A[i]=c;
s1[i]=Q(a-,i),s2[i]=Q(b,i);
}
sort(s1+,s1+q+);
sort(s2+,s2+q+);
while (s1[a1].val==) a1++;
for (register int i=; i<=n; i++) {
upd(i,);
while (s1[a1].val==i) {
Ans[s1[a1].ind]-=que(A[s1[a1].ind])-MOD,Ans[s1[a1].ind]%=MOD;
a1++;
}
while (s2[a2].val==i) {
Ans[s2[a2].ind]+=que(A[s2[a2].ind]),Ans[s2[a2].ind]%=MOD;
a2++;
}
}
for (register int i=; i<=q; i++) {
write(Ans[i]),putchar('\n');
}
} } using namespace Solve; int main () {
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
solve();
}

题解 LNOI2014 LCA的更多相关文章

  1. 【BZOJ3626】[LNOI2014]LCA 离线+树链剖分+线段树

    [BZOJ3626][LNOI2014]LCA Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度 ...

  2. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  3. bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1272  Solved: 451[Submit][Status ...

  4. bzoj 3626: [LNOI2014]LCA 离线+树链剖分

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 426  Solved: 124[Submit][Status] ...

  5. BZOJ 3626: [LNOI2014]LCA( 树链剖分 + 离线 )

    说多了都是泪啊...调了这么久.. 离线可以搞 , 树链剖分就OK了... -------------------------------------------------------------- ...

  6. 洛谷 P4211 [LNOI2014]LCA 解题报告

    [LNOI2014]LCA 题意 给一个\(n(\le 50000)\)节点的有根树,询问\(l,r,z\),求\(\sum_{l\le i\le r}dep[lca(i,z)]\) 一直想启发式合并 ...

  7. P4211 [LNOI2014]LCA

    P4211 [LNOI2014]LCA 链接 分析: 首先一种比较有趣的转化是,将所有点到1的路径上都+1,然后z到1的路径上的和,就是所有答案的deep的和. 对于多次询问,要么考虑有把询问离线,省 ...

  8. P4211 [LNOI2014]LCA LCT

    P4211 [LNOI2014]LCA 链接 loj luogu 思路 多次询问\(\sum\limits_{l \leq i \leq r}dep[LCA(i,z)]\) 可以转化成l到r上的点到根 ...

  9. [BZOJ3626] [LNOI2014]LCA(树链剖分)

    [BZOJ3626] [LNOI2014]LCA(树链剖分) 题面 给出一棵N个点的树,要求支持Q次询问,每次询问一个点z与编号为区间[l,r]内的点分别求最近公共祖先得到的最近公共祖先深度和.N, ...

随机推荐

  1. NOI 2016 优秀的拆分 (后缀数组+差分)

    题目大意:给你一个字符串,求所有子串的所有优秀拆分总和,优秀的拆分被定义为一个字符串可以被拆分成4个子串,形如$AABB$,其中$AA$相同,$BB$相同,$AB$也可以相同 作为一道国赛题,95分竟 ...

  2. Unity的Json解析<二>–写Json文件

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/50378805 作者:car ...

  3. 常见的版本号及Springcloud的版本

    谈谈软件版本号的认识 一.常见版本号说明 举个瓜:2.0.3 RELEASE 2:主版本号,当功能模块有较大更新或者整体架构发生变化时,主版本号会更新 0:次版本号.次版本表示只是局部的一些变动. 2 ...

  4. nutch+hadoop 配置使用

    nutch+hadoop 配置使用 配置nutch+hadoop 1,下载nutch.如果不需要特别开发hadoop,则不需要下载hadoop.因为nutch里面带了hadoop core包以及相关配 ...

  5. HDU 2865

    和上题一样,但K较大,不能直接用矩阵来写.这个矩阵必定是这个形式的. 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 分成对角线上元素B与非对角线上元素A k: 1 2 3 4 ... ...

  6. [CSS3] Responsive Table -- no more table

    When the screen size is small, we can use "no more table" solution. So instead of render t ...

  7. android 联系人中,在超大字体下,加入至联系人界面(ConfirmAddDetailActivity)上有字体显示不全的问题

    联系人(Contacts)中,在超大字体下.加入至联系人界面 (ConfirmAddDetailActivity)上有字母显示不全,如"j"等 这是android布局比較紧凑引起的 ...

  8. 模式匹配的KMP 算法

    常见的字符串匹配时,模式串长度为n,源串长度为m,则从头匹配,两个指针i指向源串,j指向模式串,如遇到不同则回溯使j=0,这样就要反复匹配会使效率变低. 因为在如今i之前 的模式串与匹配串的匹配是同样 ...

  9. CentOS6安装glibc-2.14,错误安装libc.so.6丢失急救办法

    到http://ftp.gnu.org/gnu/glibc/下载glibc-2.14.tar.xz 将glibc-2.14.tar.gz 上传到/home目录下 tar glibc-2.14.tar. ...

  10. kentico api

    http://devnet.kentico.com/docs/10_0/api/html/R_Project_Kentico_API.htm ScriptHelper.RegisterClientSc ...