import numpy as np
import pandas as pd

pd.Series() 构造数据

s = pd.Series([1, 3, 5, np.nan, 44, 1])

print(s)

# 0     1.0
# 1 3.0
# 2 5.0
# 3 NaN
# 4 44.0
# 5 1.0
# dtype: float64

pd.date_range() 生成数据

dates = pd.date_range('20190225', periods=2)

print(dates)  

# DatetimeIndex(['2019-02-25', '2019-02-26'], dtype='datetime64[ns]', freq='D')

pd.DataFrame() 构造数据

df = pd.DataFrame(np.random.randn(2, 4), index=dates, columns=['a', 'b', 'c', 'd'])

print(df)

#                    a         b         c         d
# 2019-02-25 1.236639 -0.918432 -0.211460 1.834082
# 2019-02-26 1.191895 -1.680464 0.863866 0.171246

pd.DataFrame() 构造数据

df1 = pd.DataFrame(np.arange(12).reshape(3, 4)

print(df1)

#    0  1   2   3
# 0 0 1 2 3
# 1 4 5 6 7
# 2 8 9 10 11

pd.DataFrame() 构造数据

df2 = pd.DataFrame({'A': 1.,
'B': pd.Timestamp('20130102'),
'C': pd.Series(1, index=list(range(5)), dtype='float32'),
'D': np.array([3] * 5, dtype='int32'),
'E': pd.Categorical(["test", "train", "test", "train", 'yzn']),
'F': 'foo'}) print(df2) # A B C D E F
# 0 1.0 2013-01-02 1.0 3 test foo
# 1 1.0 2013-01-02 1.0 3 train foo
# 2 1.0 2013-01-02 1.0 3 test foo
# 3 1.0 2013-01-02 1.0 3 train foo
# 4 1.0 2013-01-02 1.0 3 yzn foo

属性 df2.dtypes df2.index df2.columns

df2.values df2.describe() df2.T

df.sort_index(axis=1, ascending=False) df2.sort_values(by='E')

print(df2.dtypes)

# A           float64
# B datetime64[ns]
# C float32
# D int32
# E category
# F object
# dtype: object print(df2.index) # Int64Index([0, 1, 2, 3, 4], dtype='int64')
print(df2.columns)

# Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
print(df2.values)

# [[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
# [1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']
# [1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
# [1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']
# [1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'yzn' 'foo']]
print(df2.describe())

#          A    C    D
# count 5.0 5.0 5.0
# mean 1.0 1.0 3.0
# std 0.0 0.0 0.0
# min 1.0 1.0 3.0
# 25% 1.0 1.0 3.0
# 50% 1.0 1.0 3.0
# 75% 1.0 1.0 3.0
# max 1.0 1.0 3.0 print(df2.T) # 0 ... 4
# A 1 ... 1
# B 2013-01-02 00:00:00 ... 2013-01-02 00:00:00
# C 1 ... 1
# D 3 ... 3
# E test ... yzn
# F foo ... foo
# [6 rows x 5 columns] print(df.sort_index(axis=1, ascending=False)) # d c b a
# 2019-02-25 -0.086707 0.388089 0.513976 -0.148502
# 2019-02-26 -0.237655 -0.799583 -1.722373 0.318766 print(df.sort_index(axis=0, ascending=False)) # a b c d
# 2019-02-26 -2.117756 0.453841 -2.900436 1.061481
# 2019-02-25 -0.974467 0.598005 -0.552265 -2.487490 print(df2.sort_values(by='E')) # A B C D E F
# 0 1.0 2013-01-02 1.0 3 test foo
# 2 1.0 2013-01-02 1.0 3 test foo
# 1 1.0 2013-01-02 1.0 3 train foo
# 3 1.0 2013-01-02 1.0 3 train foo
# 4 1.0 2013-01-02 1.0 3 yzn foo

END

pandas 1 基本介绍的更多相关文章

  1. numpy、pandas、scipy介绍

    https://blog.csdn.net/LOLITA0164/article/details/80195124 numpy简介NumPy(Numeric Python)是一个Python包.它是一 ...

  2. pandas数据结构和介绍第一天

    pandans另种主要的数据结构Series和DateFranme 1,Series 仅由一组数据就而已产生简单的Series 2)Series 有index和values属性,表达索引对象 3)设置 ...

  3. Pandas 计算工具介绍

    # 导入相关库 import numpy as np import pandas as pd 统计函数 最常见的计算工具莫过于一些统计函数了.首先构建一个包含了用户年龄与收入的 DataFrame i ...

  4. pandas的数据结构介绍(一)—— Series

    pandas两个主要数据结构之一--Series 类似于一维数组,由一组数据和与其相关的一组索引组成 obj = Series([4, 7, -5, 3], index=['d', 'b', 'a', ...

  5. 【转】十分钟搞定pandas

    原文链接:http://www.cnblogs.com/chaosimple/p/4153083.html 关于pandas的入门介绍,比较全,也比较实在,特此记录~ 还有关于某同学的pandas学习 ...

  6. python数据分析之pandas库的Series应用

    一.pandas的数据结构介绍 1. Series 1.1 Series是由一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据索引构成.仅由一组数据可产生最简单的Series. from p ...

  7. 利用python进行数据分析之pandas库的应用(一)

    一.pandas的数据结构介绍 Series Series是由一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据索引构成.仅由一组数据可产生最简单的Series. obj=Series([4 ...

  8. 【译】10分钟学会Pandas

    十分钟学会Pandas 这是关于Pandas的简短介绍主要面向新用户.你可以参考Cookbook了解更复杂的使用方法 习惯上,我们这样导入: In [1]: import pandas as pd I ...

  9. 数据分析之pandas教程-----概念篇

    目录 1  pandas基本概念 1.1  pandas数据结构剖析 1.1.1  Series 1.1.2  DataFrame 1.1.3  索引 1.1.4  pandas基本操作 1.1.4. ...

随机推荐

  1. SVG矢量动画

    一.概述 相较于png.jpg等位图通过存储像素点来记录图像,svg (Scalable Vector Graphics)拥有一套自己的语法,通过描述的形式来记录图形.Android并不直接使用原始的 ...

  2. 《Exception》第八次团队作业:Alpha冲刺(第三天)

      一.项目基本介绍 项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 Exception 作业学习目标 1.掌握软件测试基础技术.2.学习迭代式增 ...

  3. Vue.mixin Vue.extend(Vue.component)的原理与区别

    1.本文将讲述 方法 Vue.extend Vue.mixin 与 new Vue({mixins:[], extend:{}})的区别与原理 先回顾一下 Vue.mixin 官网如下描述: Vue. ...

  4. React-setState源码的理解

    首先举一个最简单的例子: this.state={ a:1 } this.setState({ a:2 }) console.log(this.state.a)//1 可以说setState()操作是 ...

  5. 小学生都能学会的python(<lamda匿名函数,sorted(),filter(),map(),递归函数>)

    小学生都能学会的python(<<lamda匿名函数,sorted(),filter(),map(),递归函数,二分法>> 1. lambda 匿名函数 lambda 参数: ...

  6. GitHub上传项目,使用desktop(客户端)教程

    GitHub上传项目,使用desktop(客户端)教程  搜索“GitHub上传项目”,能得到很多相关的文章教程,里面讲的都特别麻烦,要弄什么ssh之类的,可算是吓坏了我,使我非常的怀疑为什么GitH ...

  7. React:关于虚拟DOM(Virtual DOM)

    Virtual DOM 是一个模拟 DOM 树的 JavaScript 对象. React 使用 Virtual DOM 来渲染 UI,当组件状态 state 有更改的时候,React 会自动调用组件 ...

  8. Mybatis动态代理实现函数调用

    如果我们要使用MyBatis进行数据库操作的话,大致要做两件事情: 1. 定义DAO接口 在DAO接口中定义需要进行的数据库操作. 2. 创建映射文件 当有了DAO接口后,还需要为该接口创建映射文件. ...

  9. NYIST 973 天下第一

    天下第一时间限制:1000 ms | 内存限制:65535 KB难度:3 描述AC_Grazy一直对江湖羡慕不已,向往着大碗吃肉大碗喝酒的豪情,但是“人在江湖漂,怎能 不挨刀",”人在江湖身 ...

  10. 洛谷 P2652 同花顺

    P2652 同花顺 题目背景 所谓同花顺,就是指一些扑克牌,它们花色相同,并且数字连续. 题目描述 现在我手里有n张扑克牌,但它们可能并不能凑成同花顺.我现在想知道,最少更换其中的多少张牌,我能让这 ...