Face The Right Way POJ - 3276 (开关问题)
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 6707 | Accepted: 3123 |
Description
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.
Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.
Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.
Input
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.
Output
Sample Input
7
B
B
F
B
F
B
B
Sample Output
3 3
Hint
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<vector>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-10
typedef long long ll;
const int maxn = 5e3+;
const int mod = 1e9 + ;
int gcd(int a, int b) {
if (b == ) return a; return gcd(b, a % b);
} int N,M;
int dir[maxn],f[maxn]; //牛的方向 F:0 B:1 int calc(int K)
{
memset(f,,sizeof(f));
int res=,sum=;
for(int i=;i+K<=N;i++)
{
if((dir[i]+sum)%!=)
{
res++;
f[i]=;
}
sum+=f[i];
if(i-K+>=)
sum-=f[i-K+];
}
for(int i=N-K+;i<N;i++) //检查剩下的牛是否有面朝后方的情况
{
if((dir[i]+sum)%!=)
return -;
if(i-K+>=)
sum-=f[i-K+];
}
return res;
} void solve()
{
int K=;
int M=N;
for(int k=;k<=N;k++)
{
int m=calc(k);
if(m>= && M>m)
{
M=m;
K=k;
}
}
cout<<K<<" "<<M<<endl;
}
int main()
{
scanf("%d",&N);
int num=;
for(int i=;i<N;i++){
char ch;
cin>>ch;
if(ch=='B')
dir[num]=;
else
dir[num]=;
// cout<<dir[num]<<" ";
num++;
}
solve();
return ;
}
Face The Right Way POJ - 3276 (开关问题)的更多相关文章
- POJ 3276 (开关问题)
题目链接: http://poj.org/problem?id=3276 题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小. 解题思 ...
- 反转(开关问题) POJ 3276
POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...
- POJ 3276 Face The Right Way 翻转(开关问题)
题目:Click here 题意:n头牛排成一列,F表示牛面朝前方,B表示面朝后方,每次转向K头连续的牛的朝向,求让所有的牛都能面向前方需要的最少的操作次数M和对应的最小的K. 分析:一个区间反转偶数 ...
- POJ 1681 (开关问题+高斯消元法)
题目链接: http://poj.org/problem?id=1681 题目大意:一堆格子,或白或黄.每次可以把一个改变一个格子颜色,其上下左右四个格子颜色也改变.问最后使格子全部变黄,最少需要改变 ...
- POJ 1222 (开关问题+高斯消元法)
题目链接: http://poj.org/problem?id=1222 题目大意:一堆开关,或开或关.每个开关按下后,周围4个方向开关反转.问使最后所有开关都关闭的,开关按法.0表示不按,1表示按. ...
- poj 1830 开关问题
开关问题 题意:给n(0 < n < 29)开关的初始和最终状态(01表示),以及开关之间的关联关系(关联关系是单向的输入a b表示a->b),问有几种方式得到最终的状态.否则输出字 ...
- POJ 1830 开关问题(高斯消元)题解
思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...
- POJ 1830 开关问题(Gauss 消元)
开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7726 Accepted: 3032 Description ...
- POJ 1830 开关问题 【01矩阵 高斯消元】
任意门:http://poj.org/problem?id=1830 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1 ...
随机推荐
- pat1079. Total Sales of Supply Chain (25)
1079. Total Sales of Supply Chain (25) 时间限制 250 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...
- springBoot学习 错误记录
1.下面结果 会出现500错误 原因:thymeleaf相关包版本不兼容导致 解决:之前配置的3.0.9对应2.1.1&2.2.2,3.0.6对应2.2.2&2.1.1都不可以,下面的 ...
- asp.net 子域跨域 带cookie
先来一个老外的解决方案: http://www.asp.net/web-api/overview/security/enabling-cross-origin-requests-in-web-api ...
- ArrayList与Vector区别
ArrayList与Vector区别表 ArrayList Vector 1.实现原理:采用动态对象数组实现,默认构造方法创建了一个空数组 1.实现原理:采用动态数组对象实现,默认构造方法创建了一个大 ...
- 【java】使用URL和CookieManager爬取页面的验证码和cookie并保存
使用java的net包和io包下的几个工具爬取页面的验证码图片并保存到本地. 然后可以把获取的cookie保存下来,做进一步处理.比如通过识别验证码,进一步使用验证码和用户名,密码,保存下来的cook ...
- android-上下文菜单的创建 - 随心
//Menu设置//覆盖两个方法onCreateOptionsMenu(Menu menu).onOptionsItemSelected(MenuItem Item)//onCreateOptions ...
- genlist -s 192.168.21.\*
显示网段192.168.21中可用的主机.
- 关于VPS主机KVM/OPENVZ/CN2区别与含义
1.OPENVZ OpenVZ是基于Linux内核和作业系统的操作系统级虚拟化技术.OpenVZ允许物理服务器运行多个操作系统,被称虚拟专用服务器(VPS,Virtual Private Server ...
- Selenium关闭windows系统弹窗
Selenium关闭windows系统弹窗 背景:在使用某业务时,会弹出windows框 提示要打印某个文本,效果如下,而正常脚本执行完了后,关闭了driver,windows的弹框还是不会消失,这时 ...
- 解决wget下载https时报错 --no-check-certificate (不检查证书)
如果使用 wget下载https开头的网址域名 时报错,你需要加上 --no-check-certificate (不检查证书)选项 例如: wget https://pypi.python.org/ ...