三次样条插值matlab实现

%三次样条差值-matlab通用程序 - zhangxiaolu2015的专栏 - CSDN博客 https://blog.csdn.net/zhangxiaolu2015/article/details/42744823

%【图文】三次样条插值算法详解_百度文库 https://wenku.baidu.com/view/14423f2e1711cc7931b716ae.html与课堂使用PPT一致。

clc

clear

x=input('请按照格式[x1,x2,x3...]格式输入y=f(x)函数已知点的横坐标xi='); %三次样条差值函数

y=input('请按照格式[y1,y2,y3...]格式输入y=f(x)函数已知点对应的纵坐标yi=');

x

x = 1x4 double
1 2 4 5
 
 

y

y = 1x4 double
1 3 4 2
 
 

n=size(x,2); %特别注意,matlab中的矩阵编号是从1开始的,而教材上的矩阵编号是从0开始的,即本程序n比PPT上n值大1

for k=2:n %计算h(i)

h(k-1)=x(k)-x(k-1);

end

for k=1:(n-2) %计算μ和λ

mu(k)=h(k)/(h(k)+h(k+1));

lambda(k)=1-mu(k);

end

mu

mu = 1x2 double
0.3333 0.6667
 
 

lambda

lambda = 1x2 double
0.6667 0.3333
 
 

以上无论是M还是m关系式矩阵通用。

for k=1:(n-2)

g(k)=3*(lambda(k)*(y(k+1)-y(k))/h(k)+mu(k)*(y(k+2)-y(k+1))/h(k+1)); %计算g(1)到g(n-2)

end

fprintf('边界条件类型选择:\n1.已知f(a)和f(b)的二阶导数\n2.已知f(a)和f(b)的一阶导数\n3.y=f(x)是以T=b-a为周期的周期函数\n');

边界条件类型选择:
1.已知f(a)和f(b)的二阶导数
2.已知f(a)和f(b)的一阶导数
3.y=f(x)是以T=b-a为周期的周期函数

in=input('请输入对应序号:');

if in==1

in

M(1)=input('请输入f(a)的二阶导数值:');

M(n)=input('请输入f(b)的二阶导数值:');

M(1)

M(n)

A=zeros(n,n); %构造追赶法所需的A和b

for k=2:(n-1)

A(k,k)=2;

A(k,k+1)=mu(k-1);

A(k,k-1)=lambda(k-1);

end

A(1,1)=2;

A(1,2)=1;

A(end,end)=2;

A(end,end-1)=1;

A

b=zeros(n,1);

for k=2:(n-1)

b(k,1)=g(k-1);

end

b(1,1)=3*((y(2)-y(1))/h(1)-2*h(1)*M(1));

b(n,1)=3*((y(n)-y(n-1))/h(n-1)+2*h(n-1)*M(n));

b

b=b';

m=zhuigan(A,b); %利用追赶法求解成功,这里的参数b形式应为行向量而非列向量

 
 

elseif in==2

y0=input('请输入f(a)的一阶导数值:');

yn=input('请输入f(b)的一阶导数值:');

A=zeros(n-2,n-2); %构造追赶法所需的A和b

for k=2:(n-3)

A(k,k)=2;

A(k,k+1)=mu(k);

A(k,k-1)=lambda(k);

end

A(1,1)=2;

A(1,2)=mu(1);

A(end,end)=2;

A(end,end-1)=lambda(n-2);

b=zeros(n-2,1);

for k=2:(n-3)

b(k,1)=g(k);

end

b(1,1)=g(1)-lambda(1)*y0;

b(end,1)=g(n-2)-mu(n-2)*yn;

b=b';

m=zhuigan(A,b);%利用追赶法求解

m(1)

m(2)

%这里解出m(1)至m(n-2),为能代入带一阶导数的分段三次埃米尔特插值多项式,要对m进行调整

for k=(n-2):-1:1

m(k+1)=m(k);

end

m(1)=y0;

m(n)=yn;

 

elseif in==3

A=zeros(n,n); %构造追赶法所需的A和b

for k=2:(n-1)

A(k,k)=2;

A(k,k+1)=mu(k-1);

A(k,k-1)=lambda(k-1);

end

A(1,1)=2;

A(1,2)=mu(1);

A(1,end)=lambda(1);

A(end,end)=2;

A(end,end-1)=lambda(n-1);

A(end,1)=mu(n-1);

b=zeros(n-1,1);

for k=1:(n-1)

b(k,1)=d(k+1);

end

N=LU_fenjieqiuxianxingfangcheng(A,b); %利用LU分解求解线性方程组

for k=1:(n-1)

M(k+1)=N(k,1);

end

M(1)=M(n);

else

fprintf('您输入的序号不正确');

end

 
ans = 0
ans = 0
 
A = 4x4 double
2.0000 1.0000 0 0
0.6667 2.0000 0.3333 0
0 0.3333 2.0000 0.6667
0 0 1.0000 2.0000
 
 
b = 4x1 double
6.0000
4.5000
-3.5000
-6.0000
 
 
c = 1x3 double
0.6667 0.3333 1.0000
 
 
a = 1x4 double
2 2 2 2
 
 
b = 1x3 double
1.0000 0.3333 0.6667
 
 

m

m = 1x4 double
2.1250 1.7500 -1.2500 -2.3750
 
 
 
 
 
 
 
 
 
 

%三转角公式

for k=1:(n-1)

clear S1

syms X

S1=(1-2*(X-x(k))/(-h(k)))*((X-x(k+1))/(h(k)))^2*y(k)+...

(X-x(k))*((X-x(k+1))/(h(k)))^2*m(k)+...

(1-2*(X-x(k+1))/(h(k)))*((X-x(k))/(h(k)))^2*y(k+1)+...

(X-x(k+1))*((X-x(k))/(h(k)))^2*m(k+1);

fprintf('当%d=<X=<%d时\n',x(k),x(k+1));

S=expand(S1)

end

$$
\begin{array}{l}
{\rm{S(x)}} = {m_k}(X - {x_k}){\left( {\frac{{X - {x_{k + 1}}}}{{{h_k}}}} \right)^2} + \\
{m_{k + 1}}(X - {x_{k + 1}}){\left( {\frac{{X - {x_k}}}{{{h_k}}}} \right)^2} + \\
{y_k}\left( {1 - - \frac{{2(X - {x_k})}}{{{h_k}}}} \right){\left( {\frac{{X - {x_{k + 1}}}}{{{h_k}}}} \right)^2} + \\
{y_{k + 1}}{\left( {\frac{{X - {x_k}}}{{{h_k}}}} \right)^2}\left( {1 - \frac{{2(X - {x_{k + 1}})}}{{{h_k}}}} \right)
\end{array}
$$

 
当1=<X=<2时
S =
当2=<X=<4时
 
S =
当4=<X=<5时
 
S =

三次样条插值matlab实现的更多相关文章

  1. 数值计算方法实验之按照按三弯矩方程及追赶法的三次样条插值 (MATLAB 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

  2. java 三次样条插值 画光滑曲线 例子

    java 三次样条插值 画光滑曲线 例子 主要是做数值拟合,根据sin函数采点,取得数据后在java中插值并在swing中画出曲线,下面为截图  不光滑和光滑曲线前后对比:    代码: 执行类: p ...

  3. 三次样条插值 cubic spline interpolation

    什么是三次样条插值 插值(interpolation)是在已知部分数据节点(knots)的情况下,求解经过这些已知点的曲线, 然后根据得到的曲线进行未知位置点函数值预测的方法(未知点在上述已知点自变量 ...

  4. 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]

    全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...

  5. 井眼轨迹的三次样条插值 (vs + QT + coin3d)

    井眼轨迹数据的测量值是离散的,根据某些测斜公式,我们可以计算出离散的三维的井眼轨迹坐标,但是真实的井眼轨迹是一条平滑的曲线,这就需要我们对测斜数据进行插值,使井眼轨迹变得平滑,我暂时决定使用三次样条进 ...

  6. 拉格朗日插值和牛顿插值 matlab

    1. 已知函数在下列各点的值为   0.2 0.4 0.6 0.8 1.0   0.98 0.92 0.81 0.64 0.38 用插值法对数据进行拟合,要求给出Lagrange插值多项式和Newto ...

  7. 拉格朗日插值matlab实现

    已给sin0.32=0.314567,sin0.34=0.333487,sin0.36=0.352274,用线性插值及抛物插值计算sin0.3367的值并估计截断误差. 1. 线性插值 clc;cle ...

  8. 数值计算方法实验之Newton 多项式插值(MATLAB代码)

    一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...

  9. 平滑算法:三次样条插值(Cubic Spline Interpolation)

    https://blog.csdn.net/left_la/article/details/6347373 感谢强大的google翻译. 我从中认识到了航位推算dead reckoning,立方体样条 ...

随机推荐

  1. IIS断开连接之后internet信息服务里面不显示本地计算机的解决方法

    今天我断开了IIS的本地计算机连接之后,出现了无法连接的情况.具体如图: 解决方法: 右击->所有服务->重新启动iis即可.

  2. mysql存储方式MyISAM 和 InnoDB的区别

    MyISAM 和 InnoDB 讲解: InnoDB和MyISAM是许多人在使用MySQL时最常用的两个表类型,这两个表类型各有优劣,视具体应用而定.基本的差别为:MyISAM类型不支持事务处理等高级 ...

  3. StringMVC返回字符串

    @RequestMapping(value="twoB.do") public void twoBCode(HttpServletRequest request,HttpServl ...

  4. java下的串口通信-RXTX

    关于java实现的串口通信,使用的是开源项目RXTX,之前sun公司也有JCL项目,不过已经很久没有更新了,RXTX项目地址:点击打开,但是两个项目的API用法是一样的,只是导入的包不一样而已.简单的 ...

  5. hibernate课程 初探单表映射2-1 hibernate进阶 本章简介

    本章简介,主要讲5大块的内容 1 hibernate.cfg.xml的配置 2 session 的简介 3 transaction的简介 4 session的详解 5 对象关系映射常用配置

  6. 洛谷 P1281 书的复制

    书的复制 Code: #include <iostream> #include <cstdio> #include <cstring> using namespac ...

  7. 【Python】python2 str 编码检测

    python2 str 编码检测 import chardet s = 'sdffdfd' print type(s) print chardet.detect(s) s2 = '反反复复' prin ...

  8. axios使用配置

    axios 配置 下载cnpm install axios vue-axios --save-dev main.js文件中配置 import axios from 'axios' import Vue ...

  9. Cypress测试工具

    参考博客:  https://testerhome.com/articles/19035 最近一段时间学习了cypress的测试工具, 她是一个端到端的测试web工具. 环境准备 1.工具:vs co ...

  10. es6 随笔

    记录一些学习es6中学习的新特性,挺有用,作为日后复习es6用,便于记忆. 1.变量定义let和const es6用let.const代替,let是定义块级作用域中的变量,const声明之后必须赋值, ...