有点散乱, 将就着看吧.

首先是博弈论的基础, 即 N 和 P 两种状态: N 为必胜状态, P 为必败状态.

对于N, P两种状态, 则有

1. 没有任何合法操作的状态, P;

2. 可以移动到P局面的情况为N状态;

3. 可以移动到的所有状态均为N状态, 则当前情况为P状态.

然后就可以引入SG函数了.

首先定义mex运算, 这是施加于一个集合的运算, 表示最小的不属于这个集合的非负整数。

for instance,

mex{0, 1, 2, 4} = 3、mex{2, 3, 5} = 0、mex{} = 0。

对于一个给定的有向无环图, 定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x) = mex{ g(y) | y是x的后继}, 这里的g(x)即

sg[x]。

例如:取石子问题, 有1堆n个的石子, 每次只能取{1, 3, 4}个石子, 先取完石子者胜利, 那么各个数的SG值为多少?

sg[0] = 0, f[] = {1, 3, 4},

x = 1时, 可以取走1-f{1}个石子, 剩余{0}个, mex{sg[0]} = {0}, 故sg[1] = 1;

x = 2时, 可以取走2-f{1}个石子, 剩余{1}个, mex{sg[1]} = {1}, 故sg[2] = 0;

x = 3时, 可以取走3-f{1, 3}个石子, 剩余{2, 0}个, mex{sg[2], sg[0]} = {0, 0}, 故sg[3] = 1;

x = 4时, 可以取走4-f{1, 3, 4}个石子, 剩余{3, 1, 0}个, mex{sg[3], sg[1], sg[0]} = {1, 1, 0}, 故sg[4] = 2;

x = 5时, 可以取走5-f{1, 3, 4}个石子, 剩余{4, 2, 1}个, mex{sg[4], sg[2], sg[1]} = {2, 0, 1}, 故sg[5] = 3;

以此类推…..

x   0   1   2   3   4   5   6   7   8
sg 0 1 0 1 2 3 2 0 1

这里的sg函数与上面提到的N, P两种状态实际上是吻合的, 当 sg[i] == 0 时, 处于P状态; 否则处于N状态.

SG函数学习总结的更多相关文章

  1. SG函数学习

    尼姆博弈就是sg函数的简单体现 学习粗:https://blog.csdn.net/luomingjun12315/article/details/45555495 //f[N]:可改变当前状态的方式 ...

  2. SG 函数学习

    \(Mex\) 运算 \(mex(S)\) 为不属于集合 \(S\) 的最小非负整数,即: \[mex(S)=\min \limits_{x \in \mathbb{N},x \not\in S} \ ...

  3. 学习笔记--博弈组合-SG函数

    fye学姐的测试唯一的水题.... SG函数是一种游戏图每个节点的评估函数 具体定义为: mex(minimal excludant)是定义在整数集合上的操作.它的自变量是任意整数集合,函数值是不属于 ...

  4. HDU 1536 sg函数

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  5. hdu-------(1848)Fibonacci again and again(sg函数版的尼姆博弈)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  6. 【转】博弈问题及SG函数(真的很经典)

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  7. (转)博弈问题与SG函数

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  8. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

  9. 博弈论初步(SG函数)

    讲解见此博客https://blog.csdn.net/strangedbly/article/details/51137432 理解Nim博弈,基于Nim博弈理解SG函数的含义和作用. 学习求解SG ...

随机推荐

  1. 剑指Offer(书):顺时针打印数组

    题目:输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1 ...

  2. sqli-labs less1 &&less3&&less4学习心得

    0x01.less1 id=1/ id=1 and 1=1结果正常 id=1 and 1=2结果正常,不合理 id=1'提示:

  3. LeetCode(23)Merge k Sorted Lists

    题目 Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity ...

  4. src与href的区别

    href: 是指向网络资源所在位置,建立和当前元素(锚点)或当前文档(链接)之间的链接,用于超链接. src:是指向外部资源的位置,指向的内容将会嵌入到文档中当前标签所在位置:在请求src资源时会将其 ...

  5. Apache ant 配置

    ANT_HOME C:\Program Files(D)\apache-ant-1.10.1Path %ANT_HOME%/binant -v

  6. 程序员是天生的软件UI设计师

    一个软件项目,谁才是软件开发的主体,是软件UI设计师?还是程序员? 这还用问吗?当然是程序员拉.引用以下alienbat知友的一段评论:对于软件开发而言,码农的工作是必需的.设计师的工作是可选的. 举 ...

  7. 12章 应用spary制作高级网页组件

    比较复杂的用户界面,tab面板  伸缩面板和折叠面板等组件.   tab面板和菜单实际上分为两种           一种是切换各个tab页中的内容时并不刷新浏览器窗口,仅仅是被隐藏起来了  利用ja ...

  8. PTA 10-排序6 Sort with Swap(0, i) (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/678 5-16 Sort with Swap(0, i)   (25分) Given a ...

  9. POJ 1952

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7748   Accepted: 267 ...

  10. Codeforces963B - Destruction of a Tree

    Portal Description 给出一个\(n(n\leq2\times10^5)\)个点的树,每次可以删除一个度数为偶数的点及其相连的边,求一种能够删掉整棵树的方案. Solution 简单起 ...