有点散乱, 将就着看吧.

首先是博弈论的基础, 即 N 和 P 两种状态: N 为必胜状态, P 为必败状态.

对于N, P两种状态, 则有

1. 没有任何合法操作的状态, P;

2. 可以移动到P局面的情况为N状态;

3. 可以移动到的所有状态均为N状态, 则当前情况为P状态.

然后就可以引入SG函数了.

首先定义mex运算, 这是施加于一个集合的运算, 表示最小的不属于这个集合的非负整数。

for instance,

mex{0, 1, 2, 4} = 3、mex{2, 3, 5} = 0、mex{} = 0。

对于一个给定的有向无环图, 定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x) = mex{ g(y) | y是x的后继}, 这里的g(x)即

sg[x]。

例如:取石子问题, 有1堆n个的石子, 每次只能取{1, 3, 4}个石子, 先取完石子者胜利, 那么各个数的SG值为多少?

sg[0] = 0, f[] = {1, 3, 4},

x = 1时, 可以取走1-f{1}个石子, 剩余{0}个, mex{sg[0]} = {0}, 故sg[1] = 1;

x = 2时, 可以取走2-f{1}个石子, 剩余{1}个, mex{sg[1]} = {1}, 故sg[2] = 0;

x = 3时, 可以取走3-f{1, 3}个石子, 剩余{2, 0}个, mex{sg[2], sg[0]} = {0, 0}, 故sg[3] = 1;

x = 4时, 可以取走4-f{1, 3, 4}个石子, 剩余{3, 1, 0}个, mex{sg[3], sg[1], sg[0]} = {1, 1, 0}, 故sg[4] = 2;

x = 5时, 可以取走5-f{1, 3, 4}个石子, 剩余{4, 2, 1}个, mex{sg[4], sg[2], sg[1]} = {2, 0, 1}, 故sg[5] = 3;

以此类推…..

x   0   1   2   3   4   5   6   7   8
sg 0 1 0 1 2 3 2 0 1

这里的sg函数与上面提到的N, P两种状态实际上是吻合的, 当 sg[i] == 0 时, 处于P状态; 否则处于N状态.

SG函数学习总结的更多相关文章

  1. SG函数学习

    尼姆博弈就是sg函数的简单体现 学习粗:https://blog.csdn.net/luomingjun12315/article/details/45555495 //f[N]:可改变当前状态的方式 ...

  2. SG 函数学习

    \(Mex\) 运算 \(mex(S)\) 为不属于集合 \(S\) 的最小非负整数,即: \[mex(S)=\min \limits_{x \in \mathbb{N},x \not\in S} \ ...

  3. 学习笔记--博弈组合-SG函数

    fye学姐的测试唯一的水题.... SG函数是一种游戏图每个节点的评估函数 具体定义为: mex(minimal excludant)是定义在整数集合上的操作.它的自变量是任意整数集合,函数值是不属于 ...

  4. HDU 1536 sg函数

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  5. hdu-------(1848)Fibonacci again and again(sg函数版的尼姆博弈)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  6. 【转】博弈问题及SG函数(真的很经典)

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  7. (转)博弈问题与SG函数

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  8. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

  9. 博弈论初步(SG函数)

    讲解见此博客https://blog.csdn.net/strangedbly/article/details/51137432 理解Nim博弈,基于Nim博弈理解SG函数的含义和作用. 学习求解SG ...

随机推荐

  1. Java-basic-7-面向对象

    继承 在Java中,每个子类只能有一个父类,但可以继承多个接口. 子类继承父类,类定义的时候用extends. 继承接口,用implements. 重写 声明为final的方法不能被重写. 声明为st ...

  2. PAT Basic 1074

    1074 宇宙无敌加法器 地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的.而在 PAT 星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”.每个 PAT 星 ...

  3. Linux学习-SELinux 初探

    什么是 SELinux 什么是 SELinux 呢?其实他是『 Security Enhanced Linux 』的缩写,字面上的意义就是安全强化的 Linux 之意! 当初设计的目标:避免资源的误用 ...

  4. HDU 5047 Sawtooth 高精度

    题意: 给出一个\(n(0 \leq n \leq 10^{12})\),问\(n\)个\(M\)形的折线最多可以把平面分成几部分. 分析: 很容易猜出来这种公式一定的关于\(n\)的一个二次多项式. ...

  5. ThreeJs 3D 全景项目开发总结

    本文来自网易云社区 作者:唐钊 项目背景 那是在一个毫无征兆的下午,我还沉浸在 vue 的世界中,突然编辑跑过来说N的新官网想做一些3D全景的东西,一开始其实我的内心是拒绝的,一是没怎么实质性做过 W ...

  6. Selenium WebDriver-通过键盘事件操作浏览器

    #encoding=utf-8 import unittest import time import chardet from selenium import webdriver class Visi ...

  7. The 18th Zhejiang University Programming Contest Sponsored by TuSimple

    Pretty Matrix Time Limit: 1 Second      Memory Limit: 65536 KB DreamGrid's birthday is coming. As hi ...

  8. c++中vector容器的功能及应用。

    vector基本操作:  1.头文件 #include<vector>. 注:一定要加上using namespace std;  2.vector对象的创建: vector<int ...

  9. 读《MySql必知必会》笔记

    MySql必知必会 2017-12-21 意义:记录个人不注意的,或不明确的,或不知道的细节方法技巧,此书250页 登陆: mysql -u root-p -h myserver -P 9999 SH ...

  10. 【bzoj4026】dC Loves Number Theory 可持久化线段树

    题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.  给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n ...