洛谷 - P4450 - 双亲数 - 整除分块
https://www.luogu.org/fe/problem/P4450
应该不分块也可以。
求\(F(n,m,d)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)==d]\)
模板题,直接套。
但是我的分块的上界忘记把n和m换过来了。
实验证明每次都要取min,不是一蹴而就的把n换到小的然后让r赋值n。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=1e6;
int pri[MAXN+1];
int &pritop=pri[0];
int mu[MAXN+1];
void sieve(int n=MAXN) {
pritop=0;
mu[1]=1;
for(int i=2; i<=n; i++) {
if(!pri[i])
pri[++pritop]=i,mu[i]=-1;
for(int j=1; j<=pritop; j++) {
int &p=pri[j];
int t=i*p;
if(t>n)
break;
pri[t]=1;
if(i%p)
mu[t]=-mu[i];
else {
mu[t]=0;
break;
}
}
}
for(int i=1;i<=n;i++)
mu[i]+=mu[i-1];
}
ll F(int n,int m,int d){
ll res=0;
int nm=min(n,m);
for(int l=1,r;l<=nm;l=r+1){
int tn=n/l;
int tm=m/l;
r=min(n/tn,m/tm);
res+=1ll*(mu[r]-mu[l-1])*(tn/d)*(tm/d);
}
return res;
}
int main() {
#ifdef Yinku
freopen("Yinku.in","r",stdin);
#endif // Yinku
sieve();
int n,m,d;
scanf("%d%d%d\n",&n,&m,&d);
if(d==0)
puts("0\n");
else
printf("%lld\n",F(n,m,d));
return 0;
}
洛谷 - P4450 - 双亲数 - 整除分块的更多相关文章
- 洛谷P3935 Calculating(整除分块)
题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...
- 洛谷 - P2424 - 约数和 - 整除分块
https://www.luogu.org/problemnew/show/P2424 记 \(\sigma(n)\) 为n的所有约数之和,例如 \(\sigma(6)=1+2+3+6=12\) . ...
- 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)
莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...
- 洛谷P1102 A-B数对
洛谷P1102 A-B数对 https://www.luogu.org/problem/show?pid=1102 题目描述 出题是一件痛苦的事情! 题目看多了也有审美疲劳,于是我舍弃了大家所熟悉的A ...
- 洛谷P1288 取数游戏II(博弈)
洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...
- [P4450] 双亲数 - 莫比乌斯反演,整除分块
模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...
- 洛谷 P1903 【模板】分块/带修改莫队(数颜色)
题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...
- 洛谷P3396 哈希冲突 (分块)
洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...
- 洛谷 P1392 取数
题面 在做这道题前,先要会他的弱化版(实际一模一样,只是愚蠢的洛谷评测级别差了一档(睿智如姬无夜)) ----------------------------------弱化版------------ ...
随机推荐
- 解压 boot.img
./split_bootimg.pl boot.img Page size: 2048 (0x00000800) Kernel size: 7062084 (0x006bc244) Ramdisk s ...
- 高性能MySQL(三)
服务器性能剖析 性能优化概述 性能优化是降低CPU使用率?错误,资源就是用来消耗的,新版本MySQL的InnoDB引擎对资源的利用率还增高了,所以这不是一个好的衡量标准. 提升每秒查询量?其实就是吞吐 ...
- FFmpeg Basics阅读笔记1:介绍
Multimedia handling with a fast audio and video encoder 作者:Frantisek Korbel 网址:http://ffmpeg.tv/ FFm ...
- 在“云基础设施即服务的魔力象限”报告中,AWS 连续三年被评为领导者
在"2014 云基础设施即服务的魔力象限"中.Gartner 将 Amazon Web Services 定位在"领导者象限"中,并评价 AWS 拥有最完整.最 ...
- jquery动态加载脚本
如果你使用的是jQuery,它里面有一个内置的方法可以用来加载单个JS文件.当你需要延迟加载一些js插件或其它类型的文件时,可以使用这个方法. 一.jQuery getScript()方法加载java ...
- php判断某字符串是否不以数字或其他特殊字符开头
if(preg_match("/^[^\d-.,:]/",$addr)){ echo $addr.'不是数字或其他特殊字符开头'; }
- 监控hadoop任务结果shell脚本
需求:每日hadoop结果文件中,找出数据不完整的日期和没有跑出数据的日期,重新进行跑hadoop任务 分析:在result/目录生成的文件中数据有2个特点 第一:日期有,但是数据不完整 第二:日期对 ...
- springboot中tomcat找不到jsp页面【转载】
这个原理还没搞明白,只知道是内嵌的tomcat找jsp时默认不读取resources目录,但是具体的默认读取的是哪个目录,打了一下午断点我也没找到.... 修改方式,添加配置修改tomcat的读取目录 ...
- EasyRTMP内置进入摄像机中实现网络推流直播摄像机的功能
本文转自博客:http://blog.csdn.net/jinlong0603/article/details/57468084 在前面的<如何用传统摄像机实现直接对接平台,类似于海康萤石.大华 ...
- Qtree3
题目描述 给出N个点的一棵树(N-1条边),节点有白有黑,初始全为白 有两种操作: 0 i : 改变某点的颜色(原来是黑的变白,原来是白的变黑) 1 v : 询问1到v的路径上的第一个黑点,若无,输出 ...