Chef has an array A = (A1, A2, ..., AN), which has N integers in it initially. Chef found that for i ≥ 1, if Ai > 0, Ai+1 > 0, and Ai+2 exists, then he can decrease both Ai, andAi+1 by one and increase Ai+2 by one. If Ai+2 doesn't exist, but Ai > 0, and Ai+1 > 0, then he can decrease both Ai, and Ai+1 (which will be the currently last two elements of the array) by one and add a new element at the end, whose value is 1.

Now Chef wants to know the number of different arrays that he can make from A using this operation as many times as he wishes. Help him find this, and because the answer could be very large, he is fine with you reporting the answer modulo 109+7.

Two arrays are same if they have the same number of elements and if each corresponding element is the same. For example arrays (2,1,1) and (1,1,2) are different.

Input

  • The first line of the input contains a single integer T denoting the number of test cases.
  • The first line contains a single integer N denoting the initial number of elements inA.
  • The second line contains N space-separated integers: A1, A2, ... , AN.

Output

For each test case, output answer modulo 109+7 in a single line.

Constraints

  • 1 ≤ T ≤ 5
  • 1 ≤ N ≤ 50
  • 0 ≤ Ai ≤ 50

Subtasks

  • Subtask 1 (20 points) : 1 ≤ N ≤ 8, 0 ≤ Ai ≤ 4
  • Subtask 2 (80 points) : Original constraints

Example

Input:
3
3
2 3 1
2
2 2
3
1 2 3 Output:
9
4
9

Explanation

Example case 1.

We'll list the various single steps that you can take (ie. in one single usage of the operation):

  • (2, 3, 1) → (2, 2, 0, 1)
  • (2, 2, 0, 1) → (1, 1, 1, 1)
  • (1, 1, 1, 1) → (1, 1, 0, 0, 1)
  • (1, 1, 0, 0, 1) → (0, 0, 1, 0, 1)
  • (1, 1, 1, 1) → (1, 0, 0, 2)
  • (1, 1, 1, 1) → (0, 0, 2, 1)
  • (2, 3, 1) → (1, 2, 2)
  • (1, 2, 2) → (0, 1, 3)

So all the arrays you can possibly get are:

(2, 3, 1), (2, 2, 0, 1), (1, 1, 1, 1), (1, 1, 0, 0, 1), (0, 0, 1, 0, 1), (1, 0, 0, 2), (0, 0, 2, 1), (1, 2, 2), and (0, 1, 3)

Since there are 9 different arrays that you can reach, the answer is 9.

——————————————————————————————————

这道题明显每次只关系到相邻两位QAQ

所以我们可以从左到右dp

f【i】【j】【k】表示i-1位已经处理并且i值为j进位为k 所以i+1的值就是v【i+1】+k

然后我们就枚举操作次数x(x<=v【i+1】+k&&x<=j)推出i+1的情况就好辣

易得i个数比n打不了多少 我们求出最大的 i 答案就是f【i】【0】【0】辣

而j也不会超过一个值 这里我带了个200 至于k同理咯QAQ

codechef AUG17 T5 Chef And Fibonacci Array的更多相关文章

  1. codechef AUG17 T1 Chef and Rainbow Array

    Chef and Rainbow Array Problem Code: RAINBOWA Chef likes all arrays equally. But he likes some array ...

  2. codechef AUG17 T2 Chef and Mover

    Chef and Mover Problem Code: CHEFMOVR Chef's dog Snuffles has so many things to play with! This time ...

  3. codechef AUG17 T3 Greedy Candidates

    Greedy Candidates Problem Code: GCAC The placements/recruitment season is going on in various colleg ...

  4. CodeChef SADPAIRS:Chef and Sad Pairs

    vjudge 首先显然要建立圆方树 对于每一种点建立虚树,考虑这一种点贡献,对于虚树上已经有的点就直接算 否则对虚树上的一条边 \((u, v)\),\(u\) 为父亲,假设上面连通块大小为 \(x\ ...

  5. codechef AUG17 T4 Palindromic Game

    Palindromic Game Problem Code: PALINGAM There are two players A, B playing a game. Player A has a st ...

  6. CF&&CC百套计划2 CodeChef December Challenge 2017 Chef And Easy Xor Queries

    https://www.codechef.com/DEC17/problems/CHEFEXQ 题意: 位置i的数改为k 询问区间[1,i]内有多少个前缀的异或和为k 分块 sum[i][j] 表示第 ...

  7. CodeChef CHEFSOC2 Chef and Big Soccer 水dp

    Chef and Big Soccer   Problem code: CHEFSOC2 Tweet     ALL SUBMISSIONS All submissions for this prob ...

  8. Codechef FNCS Chef and Churu

    Disciption Chef has recently learnt Function and Addition. He is too exited to teach this to his fri ...

  9. codechef May Challenge 2016 CHSC: Che and ig Soccer dfs处理

    Description All submissions for this problem are available. Read problems statements in Mandarin Chi ...

随机推荐

  1. 1045: [HAOI2008] 糖果传递

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4897  Solved: 2457[Submit][Status][Discuss] Descript ...

  2. TCP/IP与OSI参考模型原理

    网络是很重要同时也是很难理解的知识,这篇文章将会用自己容易理解的方式来记录有关网络的tcp与osi模型内容,不求专业深刻,但求通俗易懂也好. OSI参考模型 OSI定义了网络互连的七层框架(物理层.数 ...

  3. GNU汇编 程序状态字访问指令

    .text .global  _start _start: mrs r0,cpsr orr r0,#0b100 msr cpsr,r0

  4. tp5依赖注入(自动实例化):解决了像类中的方法传对象的问题

    app\index\Demo1.php namespace app\index\controller; /* 容器与依赖注入的原理 ----------------------------- 1.任何 ...

  5. Python之路--Python初识

    Python简介 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆(中文名字:龟叔)为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程 ...

  6. 如何提高STM32的学习效率

    时间如何安排 做任何事情前,习惯写一个计划——要在一个月内上手STM32! 没有计划的日子,每天早上醒来睁开眼睛,却不知道自己今天要干啥 计划和时间安排: 第一阶段:找感觉——谈及STM32,立即反应 ...

  7. Jconsole连接Tomcat JVM

    修改java虚拟机启动参数 在%TOMCAT_HOME%\bin\catalina.sh文件的最顶端 JAVA_OPTS=”-Dcom.sun.management.jmxremote.port=10 ...

  8. 4819: [Sdoi2017]新生舞会(分数规划)

    4819: [Sdoi2017]新生舞会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1031  Solved: 530[Submit][Statu ...

  9. Event log c++ sample.

    1. Init regedit. bool InitLog( TCHAR *logName, TCHAR *sourceName, TCHAR *MessageDllName ) { // This ...

  10. java web知识点

    java web知识点 1.Java知识点 基本数据类型,面向对象,异常,IO,NIO,集合,多线程,JVM,高级特性. 2.web知识点 JSP,Serlvet,JDBC,Http 掌握Cookie ...