理解机器为什么可以学习(三)---Theory of Generalization
前边讨论了我们介绍了成长函数和break point,现在继续讨论m是否成长很慢,是否能够取代M。

成长函数就是二分类的排列组合的数量。break point是第一个不能shatter(覆盖所有情形)的点。
1.break point对成长函数的限制
我们希望

这里引入上限函数 bound function:给了break point,看看可以组成多少排列组合,下面证明boundfunction是多项式成长的。

右上角相当于没有加条件限制,对角线就是全部的减1嘛,因为全部不可能,小一点,找个上限。
接下来填剩余部分,通过转换得到B(4, 3) = B(3, 3) + B(3,2)


所以得到,

同理得到,

由数学归纳法可以证明:

所以,我们就得到:成长函数会被上限函数bound住,上限函数会被上限函数的上限函数bound住,上限函数的上限会被一个与break point有关的多项式bound住。

接下来,我们回到最之前的Hoeffding不等式转换式:

接下来证明它们。
由于Eout是无限个点的,因此我们不能直接带入上限,现在想办法转化,类似于交叉验证,现在选择一个Ein',那么有,



所以,最终我们得到,

对于PLA来说,由于我们知道4是一个break point,所以最终成长函数会被限制住,也就是learning是可以的。
下一节引入VC Bound继续解释为什么机器可以学习。http://www.cnblogs.com/futurehau/p/6260332.html
理解机器为什么可以学习(三)---Theory of Generalization的更多相关文章
- 理解机器为什么可以学习(四)---VC Dimension
前面一节我们通过引入增长函数的上限的上限,一个多项式,来把Ein 和 Eout 的差Bound住,这一节引入VC Bound进一步说明这个问题. 前边我们得到,如果一个hypethesis集是有bre ...
- 理解机器为什么可以学习(二)---Training versus Testing
前边由Hoeffding出发讨论了为什么机器可以学习,主要就是在N很大的时候Ein PAC Eout,选择较小的Ein,这样的Eout也较小,但是当时还有一个问题没有解决,就是当时的假设的h的集合是个 ...
- 理解机器为什么可以学习(五)---Noise and Error
之前我们讨论了VC Dimension,最终得到结论,如果我们的hypetheset的VC Dimension是有限的,并且有足够的资料,演算法能够找到一个hypethesis,它的Ein很低的话,那 ...
- 理解机器为什么可以学习(一)---Feasibility of learning
主要讲解内容来自机器学习基石课程.主要就是基于Hoeffding不等式来从理论上描述使用训练误差Ein代替期望误差Eout的合理性. PAC : probably approximately corr ...
- Java虚拟机内存溢出异常--《深入理解Java虚拟机》学习笔记及个人理解(三)
Java虚拟机内存溢出异常--<深入理解Java虚拟机>学习笔记及个人理解(三) 书上P39 1. 堆内存溢出 不断地创建对象, 而且保证创建的这些对象不会被回收即可(让GC Root可达 ...
- 《深入理解计算机系统V2》学习指导
<深入理解计算机系统V2>学习指导 目录 图书简况 学习指导 第一章 计算机系统漫游 第二章 信息的表示和处理 第三章 程序的机器级表示 第四章 处理器体系结构 第五章 优化程序性能 第六 ...
- HTTP学习三:HTTPS
HTTP学习三:HTTPS 1 HTTP安全问题 HTTP1.0/1.1在网络中是明文传输的,因此会被黑客进行攻击. 1.1 窃取数据 因为HTTP1.0/1.1是明文的,黑客很容易获得用户的重要数据 ...
- [ZZ] 深度学习三巨头之一来清华演讲了,你只需要知道这7点
深度学习三巨头之一来清华演讲了,你只需要知道这7点 http://wemedia.ifeng.com/10939074/wemedia.shtml Yann LeCun还提到了一项FAIR开发的,用于 ...
- WebSocket 学习(三)--用nodejs搭建服务器
前面已经学习了WebSocket API,包括事件.方法和属性.详情:WebSocket(二)--API WebSocket是基于事件驱动,支持全双工通信.下面通过三个简单例子体验一下. 简单开始 ...
随机推荐
- LeetCode Unique Binary Search Trees (DP)
题意: 一棵BST有n个节点,每个节点的key刚好为1-n.问此树有多少种不同形态? 思路: 提示是动态规划. 考虑一颗有n个节点的BST和有n-1个节点的BST.从n-1到n只是增加了一个点n,那么 ...
- app再次进入数据不加载问题
问题原因:触发点击事件在加载页面之前完成. 1.调整了一下页面加载顺序 2.增加了settime的时间
- Ajax的open方法
Ajax的open()方法有3个参数:1.method:2.url:3.boolean: 参数1有get和post两个取值 参数2是表单的action属性值 参数3:boolean的取值 当该bool ...
- codeforce 599C Day at the Beach
Bi表示第i个块,那么就是说Bi max ≤ Bi+1 min,又因为Bi min ≤ Bi max, 因此只要判断前缀的最大值是否小于等于后缀. #include<bits/stdc++.h& ...
- 【洛谷4149】[IOI2011] Race(点分治)
点此看题面 大致题意: 给你一棵树,问长度为\(K\)的路径至少由几条边构成. 点分治 这题应该比较显然是点分治. 主要思路 与常见的点分治套路一样,由于\(K≤1000000\),因此我们可以考虑开 ...
- 剑指offer:按之字形顺序打印二叉树(Python)
题目描述 请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推. 解题思路 先给定一个二叉树的样式: 前段时间 ...
- SSM框架快速搭建
1. 新建Maven项目 ssm 2. pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xml ...
- char的有无符号类型
char 分为有符号性(signed)和无符号型(unsigned)两种: Ø若是signed型,就意味着取值范围为[-128,127]: Ø若是unsigned型,就意味着取值范围为[0,255]: ...
- Java设计模式学习——设计原则
第一章 设计原则 1.开闭原则 一个软件实体,像类,模块,函数应该对扩展开放,对修改关闭 在设计的时候,要时刻考虑,让这个类尽量的好,写好了就不要去修改.如果有新的需求来,在增加一个类就完事了,原来的 ...
- Websocket教程SpringBoot+Maven整合(详情)
1.大话websocket及课程介绍 简介: websocket介绍.使用场景分享.学习课程需要什么基础 笔记: websocket介绍: WebSocket协议是基于TCP的一种新的网络协议.它实现 ...