[ZJOI 2013] K大数查询
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=3110
[算法]
整体二分 + 线段树
时间复杂度 : O(NlogN ^ 2)
[代码]
#include<bits/stdc++.h>
using namespace std;
#define MAXN 500010
typedef long long ll;
typedef long double ld; struct query
{
int type , a , b;
ll c;
int id;
} q[MAXN]; int n , m;
int ans[MAXN]; struct Segment_Tree
{
ll cnt[MAXN << ] , tag[MAXN << ];
Segment_Tree()
{
memset(cnt , , sizeof(cnt));
}
inline void pushdown(int index , int l , int r)
{
int mid = (l + r) >> ;
cnt[index << ] += (mid - l + ) * tag[index];
cnt[index << | ] += (r - mid) * tag[index];
tag[index << ] += tag[index];
tag[index << | ] += tag[index];
tag[index] = ;
}
inline void update(int index)
{
cnt[index] = cnt[index << ] + cnt[index << | ];
}
inline void modify(int now , int l , int r , int ql , int qr , int value)
{
if (l == ql && r == qr)
{
cnt[now] += 1ll * value * (qr - ql + );
tag[now] += 1ll * value;
return;
}
pushdown(now , l , r);
int mid = (l + r) >> ;
if (mid >= qr) modify(now << , l , mid , ql , qr , value);
else if (mid + <= ql) modify(now << | , mid + , r , ql , qr , value);
else
{
modify(now << , l , mid , ql , mid , value);
modify(now << | , mid + , r , mid + , qr , value);
}
update(now);
}
inline ll query(int now , int l , int r , int ql , int qr)
{
if (l == ql && r == qr)
return cnt[now];
pushdown(now , l , r);
int mid = (l + r) >> ;
if (mid >= qr) return query(now << , l , mid , ql , qr);
else if (mid + <= ql) return query(now << | , mid + , r , ql , qr);
else return query(now << , l , mid , ql , mid) + query(now << | , mid + , r , mid + , qr);
}
} SGT;
template <typename T> inline void chkmin(T &x , T y) { x = min(x , y); }
template <typename T> inline void chkmax(T &x , T y) { x = max(x , y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline void divide(int l , int r , int L , int R)
{
static query tl[MAXN] , tr[MAXN];
int mid = (l + r) >> ;
if (L > R) return;
if (l == r)
{
for (int i = L; i <= R; i++)
if (q[i].type == ) ans[q[i].id] = mid;
return;
} else
{
int pl = , pr = ;
for (int i = L; i <= R; i++)
{
if (q[i].type == )
{
if (q[i].c > mid)
{
tr[++pr] = q[i];
SGT.modify( , , n , q[i].a , q[i].b , );
} else tl[++pl] = q[i];
} else
{
if (SGT.query( , , n , q[i].a , q[i].b) >= q[i].c)
tr[++pr] = q[i];
else
{
q[i].c -= SGT.query( , , n , q[i].a , q[i].b);
tl[++pl] = q[i];
}
}
}
for (int i = L; i <= R; i++)
if (q[i].type == && q[i].c > mid) SGT.modify( , , n , q[i].a , q[i].b , -);
for (int i = L; i <= L + pl - ; i++) q[i] = tl[i - L + ];
for (int i = L + pl; i <= R; i++) q[i] = tr[i - L - pl + ];
divide(l , mid , L , L + pl - );
divide(mid + , r , L + pl , R);
}
} int main()
{ read(n); read(m);
vector< int > que;
for (int i = ; i <= m; i++)
{
read(q[i].type);
read(q[i].a);
read(q[i].b);
read(q[i].c);
q[i].id = i;
if (q[i].type == ) que.push_back(i);
}
divide(-n , n , , m);
for (unsigned i = ; i < que.size(); i++) printf("%d\n" , ans[que[i]]); return ;
}
[ZJOI 2013] K大数查询的更多相关文章
- [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)
[BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...
- 数据结构(树套树):ZJOI 2013 K大数查询
有几个点卡常数…… 发现若第一维为位置,第二维为大小,那么修改时第一维修改区间,查询时第一维查询区间,必须挂标记.而这种情况下标记很抽象,而且Push_down不是O(1)的,并不可行. 那要怎么做呢 ...
- BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)
题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...
- [BZOJ 3110] [ZJOI 2013] K大数查询
Description 有 \(N\) 个位置,\(M\) 个操作.操作有两种,每次操作如果是: 1 a b c:表示在第 \(a\) 个位置到第 \(b\) 个位置,每个位置加入一个数 \(c\): ...
- 解题:ZJOI 2013 K大数查询
题面 树套树,权值线段树套序列线段树,每次在在权值线段树上的每棵子树上做区间加,查询的时候左右子树二分 本来想两个都动态开点的,这样能体现树套树在线的优越性.但是常数太大惹,所以外层直接固定建树了QA ...
- 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 & 3236 [Ahoi2013] 作业 题解
[原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 978 Solved: 476 Descri ...
- BZOJ 3110: [Zjoi2013]K大数查询 [树套树]
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6050 Solved: 2007[Submit][Sta ...
- 区间K 大数查询
算法训练 区间k大数查询 时间限制:1.0s 内存限制:256.0MB 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列 ...
- 蓝桥杯 算法训练 区间k大数查询(水题)
算法训练 区间k大数查询 时间限制:1.0s 内存限制:256.0MB 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列长度. ...
随机推荐
- spoj 1811 LCS - Longest Common Substring (后缀自己主动机)
spoj 1811 LCS - Longest Common Substring 题意: 给出两个串S, T, 求最长公共子串. 限制: |S|, |T| <= 1e5 思路: dp O(n^2 ...
- 怎样使用oracle 的DBMS_SQLTUNE package 来执行 Sql Tuning Advisor 进行sql 自己主动调优
怎样使用oracle 的DBMS_SQLTUNE package 来执行 Sql Tuning Advisor 进行sql 自己主动调优 1>.这里简单举个样例来说明DBMS_SQLTUN ...
- 负载均衡之F5设备
http://xjsunjie.blog.51cto.com/999372/666672 目前全球范围内应用比较广泛的负载均衡设备为美国的F5.F5于2000年底进驻中国,在国内业界,F5负载均衡产品 ...
- 手写JQuery 的框架的实现
JQuery的好处 快速上手(学习成本低) 开发效率高(选择器.批量操作 DOM.链型操作--) 一系列的封装(动画.ajax) 浏览器兼容(1.x版本 兼容IE6.7.8) JQuery 1.11. ...
- AVL平衡树的插入例程
/* **AVL平衡树插入例程 **2014-5-30 11:44:50 */ avlTree insert(elementType X, avlTree T){ if(T == NULL){ T = ...
- ACPI in Linux
https://01.org/zh/linux-acpi The goal of this project is to enable Linux to take advantage of platfo ...
- Arduino关于旋转编码器程序的介绍(Reading Rotary Encoders)--by Markdown
介绍 旋转或编码器是一个角度測量装置. 他用作精确測量电机的旋转角度或者用来控制控制轮子(能够无限旋转,而电位器只能旋转到特定位置).其中有一些还安装了一个能够在轴上按的button,就像音乐播放器的 ...
- how to run a continuous background task on OpenShift
https://stackoverflow.com/questions/27152438/best-way-to-run-rails-background-jobs-with-openshift ht ...
- iOS开发:Toast for iPhone
iOS开发:Toast for iPhone 分享一个我写的类似于android的toast的提示框 主要特点: 1,支持屏幕Y轴任意位置显示,设置距离顶/底端距离 2,支持多行文本 3,支持设置 ...
- 对canvas arc()中counterclockwise参数的一些误解
一直没有很细心地去研究CanvasRenderingContext2D对象的arc方法,对它的认识比较模糊,导致犯了一些错误,特发此文,以纠正之前的错误理解. arc()方法定义如下: arc() 方 ...