十分普通的DP+不平凡的转移

传送门

这道题状态十分明显。转移是\(O(n^4)\)的,过不去,我们需要优化。

一个十分显然的DP是\(f(i,j)\)表示第\(i\)天时候拥有\(j\)单位股票的最大收益。(可以小于零)。它的转移方式是:

\(f(i,j)=max(f(k,b)+(b-j) \times sell[t] or(buy[t]))\)

此时,我们发现一个转移需要两重循环,也就是\(O(n^2)\),加上右边的式子,就是\(O(n^4)\)的。

考虑优化:

  • 对于转移方程,发现我们可以进行参变量分离。对状态转移方程进行代数变形。

    • \(RHS=max(f(k,b)+b \times sell[t]-j \times sell[t])\)
    • \(j\)在转移时,是最开始那个等式的\(LHS\),可以提前确定,从\(max\)拿出来。
    • \(RHS=max(f(k,b)+b \times sell[t])-j\times sell[t]\)
    • 于是,对于\(max(f(k,b)+b \times sell[t])\),可以拿数据结构维护了。
  • 对于转移方法,我们只需要从\(f(i-W-1,j) , j\le maxP\)转移过来就好了。这一定是最优的那个状态,比它要早的状态一定会$\le f(i-W-1,j) $。

    • 因为这个(晚的)状态在转移的时候,考虑过 从比他 (早的) 状态直接转移过来,于是\(f(i-W-1,j)\)不小于前面那个。

于是,我们可以将\(f(i-W-1,b) ,b\le maxP\)的所有状态压入某个数据结构。我们发现,对于这种数据结构的要求是:

  • 维护最大值
  • 可以清理过期状态(买入卖出股票有多少限制)
  • 重置方便

就是单调队列吃饭的本领。

一句话解释单调队列:一个状态比你小(限制条件少)还比你强(数值大),那么你就被淘汰了。

单调队列是\(O(n)\)的,枚举\(LHS\)的\(i\)是\(O(n)\)的。总复杂度\(O(n^2)\),可以过了。


#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<bitset>
#include<vector>
#include<map>
#include<ctime>
#include<cstdlib>
#include<set>
#include<bitset>
#include<stack>
#include<list>
#include<cmath>
using namespace std;
#define RP(t,a,b) for(register ll (t)=(a),edd_=(b);t<=edd_;++t)
#define DRP(t,a,b) for(register ll (t)=(a),edd_=(b);t>=edd_;--t)
#define ERP(t,a) for(int t=head[a];t;t=e[t].to)
#define Min(a,b) ((a)<(b)?(a):(b))
#define TMP template<class ccf>
typedef long long ll;
TMP inline ccf qr(ccf k){
char c=getchar();
ccf x=0;
int q=1;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
if(q==-1)
x=-x;
return x;
}
const int maxn=2e3+15;
inline void Swap(ll& a,ll& b){
ll k=a;
a=b;
b=k;
} ll buy[maxn];
ll sell[maxn];
ll buytimes[maxn];
ll selltimes[maxn];
ll n,maxP,W;
ll dp[maxn][maxn];
int q[maxn]; TMP inline ccf Max(ccf a,ccf b){
if(a<b)
return b;
return a;
} inline void init(){
memset(dp,-0xf,sizeof dp);
RP(t,1,n){
buy[t]=qr(1ll);
sell[t]=qr(1ll);
buytimes[t]=qr(1ll);
selltimes[t]=qr(1ll);
}
RP(t,1,n){
int head=1,tail=0;
if(t-W-1>0){ //trade
DRP(i,maxP,0){
while(head<=tail&&q[head]>i+selltimes[t])
head++;
while(head<=tail&&
dp[t-W-1][q[tail]]+1ll*q[tail]*sell[t]
<=dp[t-W-1][i]+1ll*i*sell[t]
)
--tail;
q[++tail]=i;
if(head<=tail)
dp[t][i]=max(dp[t][i],dp[t-W-1][q[head]]+(q[head]-i)*sell[t]*1ll);
} //purchase
head=1,tail=0;
RP(i,0,maxP){
while(head<=tail&&q[head]<i-buytimes[t])
++head;
while(head<=tail&&
dp[t-W-1][q[tail]]+q[tail]*buy[t]
<=dp[t-W-1][i]+i*buy[t])
--tail;
q[++tail]=i;
if(head<=tail)
dp[t][i]=Max(dp[t][i],dp[t-W-1][q[head]]+(q[head]-i)*buy[t]*1ll);
}
} //restart
RP(i,0,maxP){
dp[t][i]=Max(dp[t][i],dp[t-1][i]);
if(i<=buytimes[t])
dp[t][i]=Max(dp[t][i],-i*buy[t]);
} }
ll ans=0;
RP(t,0,maxP)
ans=max(ans,dp[n][t]);
cout<<ans<<endl; } int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
while(~scanf("%lld%lld%lld",&n,&maxP,&W))
init();
return 0;
}

【题解】[SCOI2010]股票交易的更多相关文章

  1. 【BZOJ1855】[Scoi2010]股票交易 DP+单调队列

    [BZOJ1855][Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预 ...

  2. [luogu] P2569 [SCOI2010]股票交易 (单调队列优化)

    P2569 [SCOI2010]股票交易 题目描述 最近 \(\text{lxhgww}\) 又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,\(\te ...

  3. 单调队列优化DP || [SCOI2010]股票交易 || BZOJ 1855 || Luogu P2569

    题面:P2569 [SCOI2010]股票交易 题解: F[i][j]表示前i天,目前手中有j股的最大收入Case 1:第i天是第一次购买股票F[i][j]=-j*AP[i]; (1<=j< ...

  4. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  5. 洛谷P2569 [SCOI2010]股票交易

    P2569 [SCOI2010]股票交易 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股 ...

  6. BZOJ 1855: [Scoi2010]股票交易(DP+单调队列)

    1855: [Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未 ...

  7. [SCOI2010]股票交易(单调队列优化dp)

    [SCOI2010]股票交易 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第 ...

  8. [bzoj1855][Scoi2010]股票交易_动态规划_单调队列

    股票交易 bzoj-1855 Scoi-2010 题目大意:说不明白题意系列++...题目链接 注释:略. 想法:这个题还是挺难的. 动态规划没跑了 状态:dp[i][j]表示第i天手里有j个股票的最 ...

  9. bzoj1855: [Scoi2010]股票交易

    Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...

随机推荐

  1. path.join 与 path.resolve 的区别

    1. 对于以/开始的路径片段,path.join只是简单的将该路径片段进行拼接,而path.resolve将以/开始的路径片段作为根目录,在此之前的路径将会被丢弃,就像是在terminal中使用cd命 ...

  2. 基于WPF系统框架设计(6)-整合MVVM框架(Prism)

    应用场景 我们基础的框架已经搭建起来了,现在整合MVVM框架Prism,在ViewModel做一些逻辑处理,真正把界面设计分离出来. 这样方便我们系统开发分工合作,同时提高系统可维护性和灵活性. 具体 ...

  3. C语言实现的水仙花数

    #include <stdio.h>void main(){ int ge,shi,bai;      for (int i =100; i < 1000; i++)     {   ...

  4. 【IntelliJ IDEA】Debug调试的使用记录

    Debug调试是否能行云流水的使用,是鉴定你会不会使用一个IDE的最基本的标准. 今天再这里把Idea的debug使用流程走一遍. ================================== ...

  5. MySQL GUI Tools 使用简介

    转自:http://database.ctocio.com.cn/422/8919922.shtml    MySQL GUI Tools是一套图形化桌面应用工具套装,可以用来管理MySQL服务器.该 ...

  6. 【LeetCode-面试算法经典-Java实现】【139-Word Break(单词拆分)】

    [139-Word Break(单词拆分)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a string s and a dictionary of w ...

  7. 基于Wiremock创建Mock Service平台

    转载:http://blog.csdn.net/liuchunming033/article/details/52399397 1.Wiremock工具介绍 一般开发项目都会分模块进行,比如都会把前端 ...

  8. SGU 231 Prime Sum 求&lt;=n内有多少对素数(a,b)使得a+b也为素数 规律题

    题目链接:contest=0&problem=231">点击打开链接 题意: 求<=n内有多少对素数(a,b)使得a+b也为素数 思路: 我们发现全部素数间隔都是> ...

  9. 【Python数据分析】IPython基础

    一.配置启动IPython 打开cmd窗口,在dos界面下输入ipython,结果报错了!!! 出现这个问题是由于环境变量未配置(前提:已经安装了ipython),那么接下来配置环境变量 我的电脑→右 ...

  10. MySQL数据表导出某条记录

    请按照步骤导出,否则可能会报错: ERROR (HY000): The MySQL server is running with the --secure-file-priv option so it ...