UOJ #32. 【UR #2】跳蚤公路【Floydbellman-ford】
首先看这个范围很夸张但是其实有限制的也就在1e18*n范围里(走完一圈的边权),然后限制一定是有负环
用Floyd传递闭包,然后设f[i][j][k]为从1走了i步到j并且有k个x的最短路,用B-F处理,然后有负环就是kx+f[n][i][k]<jx+f[n-1][i][j]
对每个点求出x的限制
如果1到v的路径上有负环就不合法,所以用传递闭包出来的连通性把对当前v有限制的区间放到一起,求补集即可
判-1就是如果最后剩下的个数比1e18/100大就说明有一边是没限制的
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=105;
const long long inf=1e18;
int n,m;
long long f[N][N][N<<1];
bool a[N][N];
vector<pair<long long,long long> >b[N],s;
struct qwe
{
int u,v,w,s;
}e[N*N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void minn(long long &x,long long y)
{
if(x>y)
x=y;
}
void maxx(long long &x,long long y)
{
if(x<y)
x=y;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
a[i][i]=1;
for(int i=1;i<=m;i++)
{
e[i].u=read(),e[i].v=read(),e[i].w=read(),e[i].s=read();
a[e[i].u][e[i].v]=1;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i][k]&&a[k][j])
a[i][j]=1;
memset(f,0x3f,sizeof(f));
// inf=f[0][0][0];
f[0][1][n]=0;
for(int i=1;i<=n;i++)
for(int k=0;k<=2*n;k++)
{
for(int j=1;j<=n;j++)
f[i][j][k]=f[i-1][j][k];
for(int j=1;j<=m;j++)
if(k-e[j].s>=0&&k-e[j].s<=2*n)
minn(f[i][e[j].v][k],f[i-1][e[j].u][k-e[j].s]+e[j].w);
}
for(int i=1;i<=n;i++)
for(int j=0;j<=2*n;j++)
if(f[n][i][j]<inf)
{
long long l=-inf,r=inf;
for(int k=0;k<=2*n;k++)
if(f[n-1][i][k]<inf)
{
if(j==k)
{
if(f[n-1][i][j]==f[n][i][j])
r=-inf,l=inf;
}
else if(j<k)
maxx(l,floor((double)(f[n-1][i][k]-f[n][i][j])/(double)(j-k))+1);
else
minn(r,ceil((double)(f[n-1][i][k]-f[n][i][j])/(double)(j-k))-1);
}
if(l<=r)
b[i].push_back(make_pair(l,r));
}
for(int i=1;i<=n;i++)
{
s.clear();
for(int j=1;j<=n;j++)
if(a[j][i])
for(int k=0,len=b[j].size();k<len;k++)
s.push_back(b[j][k]);
sort(s.begin(),s.end());
long long l=-inf,r=-inf-1,sm=2*inf+1;
for(int j=0,len=s.size();j<len;j++)
{
if(s[j].first<=r)
maxx(r,s[j].second);
else
sm-=r-l+1,l=s[j].first,r=s[j].second;
}
sm-=r-l+1;
if(sm>=inf/100)
puts("-1");
else
printf("%lld\n",sm);
}
return 0;
}
UOJ #32. 【UR #2】跳蚤公路【Floydbellman-ford】的更多相关文章
- 【UOJ#32】【UR #2】跳蚤公路(最短路)
[UOJ#32][UR #2]跳蚤公路(最短路) 题面 UOJ 题解 不难发现要求的就是是否存在负环.也就是我们只需要找到所有的负的简单环,很容易就可以想到维护路径上和\(x\)相关的内容,即维护一下 ...
- 【UR #2】跳蚤公路
[UR #2]跳蚤公路 参照yjc方法.也就是地铁环线那个题. 求每个点不在负环内的x的取值范围.然后所有1到j能到i的j的范围取交.得到答案. 每个边形如kx+b的直线,每个环也是 每个点不在负环内 ...
- Solution -「UR #2」「UOJ #32」跳蚤公路
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的带权有向图,每条边还有属性 \(s\in\{-1,0,1\}\).对于每个 \(u ...
- UOJ 【UR #5】怎样跑得更快
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...
- UOJ #22 UR #1 外星人
LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...
- UOJ.52.[UR #4]元旦激光炮(交互 思路)
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...
- UOJ【UR #12】实验室外的攻防战
题意: 给出一个排列$A$,问是否能够经过以下若干次变换变为排列$B$ 变换:若${A_i> A_i+1}$,可以${swap(A_i,A_i+1)}$ 考虑一个数字从A排列到B排列连出来的路径 ...
- UOJ Round总结
#22. [UR #1]外星人 一开始随便搞出第一问答案,很显然的性质对$x$有变化的$a$一定是递减的,就拿一个桶直接记录可以达到的值 然后我开始想第二问,一开始想直接在这个桶上统计答案,然后发现不 ...
- 【胡策篇】题解 (UOJ 192 + CF938G + SPOJ DIVCNT2)
和泉纱雾与烟花大会 题目来源: UOJ 192 最强跳蚤 (只改了数据范围) 官方题解: 在这里哦~(说的很详细了 我都没啥好说的了) 题目大意: 求树上各边权乘积是完全平方数的路径数量. 这种从\( ...
随机推荐
- indows下PHP通过ffmpeg给上传的视频截图详解
windows下PHP通过ffmpeg给上传的视频截图详解,php_ffmpeg.dll安装下载,找了很久php_ffmpeg.dll的下载地址和应用,发现有用的资源很少,现在问题解决了,贴出来跟大家 ...
- [2018-11-03]2018年10月28日宁波dotnet社区活动回顾及下次活动预告
离上次活动,有半年了,汗.之后尽量保证每月一次,以组织为主,多邀请嘉宾来分享. 本次活动不足之处 人手不足:由于活动组织事项受限于人手(目前就我一个,这次活动前后我又应邀给大红鹰学院应届生介绍dotn ...
- mysql父子查询
https://segmentfault.com/a/1190000007531328
- BZOJ 4435 [Cerc2015]Juice Junctions 分治最小割+hash
分治最小割的题目,要求n2. 之前用的n3的方法自然不能用了. 于是用hash,设hash[i][j]表示在最小割为i的时候,j是否与S联通. 看懂这个需要理解一下最小割树的构造. 这种题建议用EK写 ...
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- Module.exports和exports的区别
原文链接: https://www.ycjcl.cc/2017/02/10/module-exportshe-exportsde-qu-bie/ 学习Seajs时,看到了exports.doSomet ...
- JavaScript中双叹号(!!)作用示例介绍
http://www.jb51.net/article/48881.htm 经常看到这样的例子: var a: var b=!!a; a默认是undefined.!a是true,!!a则是false, ...
- Hadoop- Hadoop详解
首先所有知识以官网为准,所有的内容在官网上都有展示,所有的变动与改进,新增内容都以官网为准.hadoop.apache.org Hadoop是一个开源的可拓展的分布式并行处理计算平台,利用服务器集群根 ...
- 基于KD-Tree的最近邻搜索
目标:查询目标点附近的10个最近邻邻居. load fisheriris x = meas(:,:); figure(); g1=gscatter(x(:,),x(:,),species); %spe ...
- 使用C++模拟C#的委托机制
1. [代码][C/C++]代码 //Event.h #ifndef _EVENT_H_#define _EVENT_H_class EmptyObject {};template<typen ...