[CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]
题面:
思路:
首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$
这道题的最特殊的点在于,他的gcd不是两个数的而是多个数的,是一坨sigma
但是,我们发现它依然可以反演
令$f\left(i\right)$为区间$\left[l,r\right]$内选出$n$个数,总计$gcd=i$的方法数
令$g\left(i\right)$为区间$\left[l,r\right]$内选出$n$个数,总计$i|gcd$的方法数
那么依旧满足$g(d)=\sum_{d|i}f\left(i\right)$,反演后得到$f(d)=\sum_{d|i}\mu\left(\frac id\right)g\left(i\right)$
因此$f\left(d\right)=\sum_{i=1}^{\frac nd}\left(\lfloor\frac Rd\rfloor-\lfloor\frac Ld\rfloor\right)^n$
答案即为对于缩小过的$L,R$,$f\left(1\right)$的值
因为后半部分的可以用快速幂加数论分块做到$O\left(\sqrt n\right)$
所以前半部分杜教筛$\mu$即可
Code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#define ll long long
using namespace std;
inline ll read(){
ll re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
ll pri[],tot=,mu[],n,K,L,R;bool vis[];
ll MOD=1e9+;
void init(){
ll i,j,k;mu[]=;
for(i=;i<=;i++){
if(!vis[i]){
pri[++tot]=i;mu[i]=-;
}
for(j=;j<=tot;j++){
k=i*pri[j];if(k>) break;
vis[k]=;
if(i%pri[j]==){
mu[k]=;break;
}
mu[k]=-mu[i];
}
}
for(i=;i<=;i++) mu[i]=mu[i-]+mu[i];
}
ll sum1(ll x){return x*(x+)/;}
map<ll,ll>m;
ll S2(ll x){
if(x<=) return mu[x];
ll re=,i,j;
if(m[x]) return m[x];
for(i=;i<=x;i=j+){
j=x/(x/i);
re-=((j-i+)*S2(x/i))%MOD;
re=(re+MOD)%MOD;
}
return m[x]=re;
}
ll ppow(ll a,ll b){
ll re=;
while(b){
if(b&) re=re*a%MOD;
a=a*a%MOD;b>>=;
}
return re%MOD;
}
int main(){
init();
n=read();K=read();L=read();R=read();
L=(L-)/K;R=R/K;
ll i,j;ll ans=;
for(i=;i<=R;i=j+){
j=R/(R/i);
if(i<=L) j=min(j,L/(L/i));
ans=(ans+(S2(j)-S2(i-)+MOD)%MOD*ppow(R/i-L/i,n)%MOD)%MOD;
}
printf("%lld\n",ans);
}
[CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]的更多相关文章
- BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演
BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...
- 【XSY2731】Div 数论 杜教筛 莫比乌斯反演
题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...
- [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)
题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...
- [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)
题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑Nj=1∑Nd(ij) ...
- bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)
题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...
- [51nod1220] 约数之和(杜教筛+莫比乌斯反演)
题面 传送门 题解 嗯--还是懒得写了--这里 //minamoto #include<bits/stdc++.h> #define R register #define IT map&l ...
- 【BZOJ4176】Lucas的数论-杜教筛
求$$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$$,其中$f(x)$表示$x$的约数个数,$0\leq n\leq 10^9$,答案膜$10^9+ ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- 【BZOJ3930】选数(莫比乌斯反演,杜教筛)
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...
随机推荐
- Java 发送 Https 请求工具类 (兼容http)
依赖 jsoup-1.11.3.jar <dependency> <groupId>org.jsoup</groupId> <artifactId>js ...
- CUDA核函数参数示意:Kernel<<<Dg,Db, Ns, S>>>(param list)
核函数是GPU每个thread上运行的程序.必须通过__gloabl__函数类型限定符定义.形式如下: __global__ void kernel(param list){ } 核函数只能在主机端 ...
- 扩展 -------jQuery
本文摘要:http://www.liaoxuefeng.com/ 编写jQuery插件 为了满足需求,我们经常会调用一些插件,js插件都是别人写的,今天就来了解了解一些方法. 给jQuery对象绑定一 ...
- iterable -------JavaScript
本文摘要:http://www.liaoxuefeng.com/ 遍历Array可以采用下标循环,遍历Map和Set就无法使用下标.为了统一集合类型,ES6标准引入了新的iterable类型,Arra ...
- Servlet 学习小结
一.是什么 是用java编写的服务器端程序.从狭义来讲,servlet是java语言实现的一个接口:广义的servlet是指任何实现了这个servlet接口的类.一般情况下,人们将servlet理解为 ...
- 工具之UltraEdit之正则表达式
- GPIO实现I2C协议模拟(1)
最近需要用GPIO模拟I2C协议,如果是在Linux下面比较简单,但在Windows下面,是否有没Linux那么简单了. 索性自己对I2C协议还有一些了解,翻了SPEC并结合示波器量出的实际信号分析, ...
- 如何使用koa实现socket.io官网的例子
socket.io官网中使用express实现了一个最简单的IM即时聊天,今天我们使用koa来实现一下 ### 框架准备 确保你本地已经安装好了nodejs和npm,使用koa要求node版本> ...
- php同一个用户同时只能登陆一个, 后登陆者踢掉前登陆者(排他登陆)
通常用户登陆,如果没有特别的限定, 同一个用户可以同时登陆, 今天搞了一个东西限定一个用户不能同时登陆到一个系统上, 后登陆者会把前面登陆的踢出来.(有点像QQ,同个帐号不能在多个地方同时在线, 后面 ...
- php实现的三个常用加密解密功能函数示例
目录 算法一: 算法二: 算法三(改进第一个加密之后的算法) 本文实例讲述了php实现的三个常用加密解密功能函数.分享给大家供大家参考,具体如下: 算法一: //加密函数 function lock_ ...