[CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]
题面:
思路:
首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$
这道题的最特殊的点在于,他的gcd不是两个数的而是多个数的,是一坨sigma
但是,我们发现它依然可以反演
令$f\left(i\right)$为区间$\left[l,r\right]$内选出$n$个数,总计$gcd=i$的方法数
令$g\left(i\right)$为区间$\left[l,r\right]$内选出$n$个数,总计$i|gcd$的方法数
那么依旧满足$g(d)=\sum_{d|i}f\left(i\right)$,反演后得到$f(d)=\sum_{d|i}\mu\left(\frac id\right)g\left(i\right)$
因此$f\left(d\right)=\sum_{i=1}^{\frac nd}\left(\lfloor\frac Rd\rfloor-\lfloor\frac Ld\rfloor\right)^n$
答案即为对于缩小过的$L,R$,$f\left(1\right)$的值
因为后半部分的可以用快速幂加数论分块做到$O\left(\sqrt n\right)$
所以前半部分杜教筛$\mu$即可
Code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#define ll long long
using namespace std;
inline ll read(){
ll re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
ll pri[],tot=,mu[],n,K,L,R;bool vis[];
ll MOD=1e9+;
void init(){
ll i,j,k;mu[]=;
for(i=;i<=;i++){
if(!vis[i]){
pri[++tot]=i;mu[i]=-;
}
for(j=;j<=tot;j++){
k=i*pri[j];if(k>) break;
vis[k]=;
if(i%pri[j]==){
mu[k]=;break;
}
mu[k]=-mu[i];
}
}
for(i=;i<=;i++) mu[i]=mu[i-]+mu[i];
}
ll sum1(ll x){return x*(x+)/;}
map<ll,ll>m;
ll S2(ll x){
if(x<=) return mu[x];
ll re=,i,j;
if(m[x]) return m[x];
for(i=;i<=x;i=j+){
j=x/(x/i);
re-=((j-i+)*S2(x/i))%MOD;
re=(re+MOD)%MOD;
}
return m[x]=re;
}
ll ppow(ll a,ll b){
ll re=;
while(b){
if(b&) re=re*a%MOD;
a=a*a%MOD;b>>=;
}
return re%MOD;
}
int main(){
init();
n=read();K=read();L=read();R=read();
L=(L-)/K;R=R/K;
ll i,j;ll ans=;
for(i=;i<=R;i=j+){
j=R/(R/i);
if(i<=L) j=min(j,L/(L/i));
ans=(ans+(S2(j)-S2(i-)+MOD)%MOD*ppow(R/i-L/i,n)%MOD)%MOD;
}
printf("%lld\n",ans);
}
[CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]的更多相关文章
- BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演
BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...
- 【XSY2731】Div 数论 杜教筛 莫比乌斯反演
题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...
- [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)
题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...
- [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)
题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑Nj=1∑Nd(ij) ...
- bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)
题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...
- [51nod1220] 约数之和(杜教筛+莫比乌斯反演)
题面 传送门 题解 嗯--还是懒得写了--这里 //minamoto #include<bits/stdc++.h> #define R register #define IT map&l ...
- 【BZOJ4176】Lucas的数论-杜教筛
求$$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$$,其中$f(x)$表示$x$的约数个数,$0\leq n\leq 10^9$,答案膜$10^9+ ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- 【BZOJ3930】选数(莫比乌斯反演,杜教筛)
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...
随机推荐
- Object.prototype.toString的应用
使用Object.prototype上的原生toString()方法判断数据类型,使用方法如下: Object.prototype.toString.call(value)1.判断基本类型: Obje ...
- SOA体系-三大核心部件
1.ESB(Enterprise Service Bus)企业服务总线.ESB是传统中间件技术与XML.Web服务等技术结合的产物.ESB提供了网络中最基本的连接中枢,是构筑企业神经系统的必要元素.从 ...
- 2018.1.30 PHP编程之验证码
PHP编程之验证码 1.创建验证码函数 验证码函数输入通用函数,将函数放入global.func.php里. //创建一个随机码 for($ i=0;$i<4;$i++){ $_nmsg. = ...
- BZOJ2287: 【POJ Challenge】消失之物(背包dp)
题意 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” ...
- 大蟒蛇肚子的"风暴"
遇到了数据库连接数不足的问题,一般情况下会预留一些会话增加的情况,但在一些特殊情况下如连接风暴(logon storm), 如果在监听中没有做rate限流,对数据库来说巨大的冲击可能会导致数据库Han ...
- jsp引用servlet生成的验证码代码演示
此演示代码主要包括以下三部分:1.checkCode.java:用于生成验证码2.checkCodeServler3.check.jsp 验证 下面是checkCode.java的内容: 复制代码代码 ...
- 解决国内网络Python2.X 3.X PIP安装模块连接超时问题
pip国内的一些镜像 阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.ustc.edu.cn/si ...
- centos7中使用LVM管理磁盘和挂载磁盘
centos7使用LVM管理一块新的磁盘 注意!文中凡是带#的都是命令标志. 一些重要概念: LV(Logical Volume)- 逻辑卷, VG(Volumne Group)- 卷组, PV(Ph ...
- stm32基本定时器timer6的原理与使用
/********************基本定时器 TIM 参数定义,只限 TIM6.7************/ /* 一.定时器分类 STM32F1 系列中,除了互联型的产品,共有 8 个定时器 ...
- poj 3292 H-素数问题 扩展艾氏筛选法
题意:形似4n+1的被称作H-素数,两个H-素数相乘得到H-合成数.求h范围内的H-合成数个数 思路: h-素数 ...