Fibonacci

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Problem Description
2007年到来了。经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列
(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来。
接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验zouyu说的是否正确。
 
Input
输入若干数字n(0 <= n <= 100000000),每个数字一行。读到文件尾。
 
Output
输出f[n]的前4个数字(若不足4个数字,就全部输出)。
 
Sample Input
0
1
2
3
4
5
35
36
37
38
39
40
 
Sample Output
0
1
1
2
3
5
9227
1493
2415
3908
6324
1023
【分析】:

这是道神奇的题,求斐波那契数列的0到第100000000项的前四位,之前做过斐波那契数列的水题,求到63项

能用__int64解决,但是到100000000项的话用数组都会超时。

以下是大牛的解释:

先看对数的性质,loga(b^c)=c*loga(b),loga(b*c)=loga(b)+loga(c);
假设给出一个数10234432,那么log10(10234432)=log10(1.0234432*10^7)=log10(1.0234432)+7;

log10(1.0234432)就是log10(10234432)的小数部分.

log10(1.0234432)=0.010063744
10^0.010063744=1.023443198
那么要取几位就很明显了吧~
先取对数(对10取),然后得到结果的小数部分bit,pow(10.0,bit)以后如果答案还是<1000那么就一直乘10。
注意先处理了0~20项是为了方便。

这题要利用到数列的公式:an=(1/√5)
* [((1+√5)/2)^n-((1-√5)/2)^n](n=1,2,3.....)

log10(an)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0)+log10(1-((1-√5)/(1+√5))^n)

其中f=(sqrt(5.0)+1.0)/2.0;
因为log10(1-((1-√5)/(1+√5))^n)趋近于0
所以可以写成log10(an)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0);
最后取其小数部分。

而我们要取Fibonacci数的前4位,可以通过计算以10为底的对数,原理与HDU 1060 Leftmost Digit是一样的,不妨可以点开看看

另外,需要提及的一点是前20项Fibonacci数需要自己计算,一方面是因为Fibonacci数未满4位,更重要的一点是Fibonacci数较小时,公式的精确度不高

比如第17项Fibonacci应该是1597,但公式求得的是1596;而19项Fibonacci应该是4181,但公式求得的是4180

因此,我们需要先自己计算出Fibonacci数的前19项。

【代码】:

#include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int N = ;
const int inf = ;
const int mod = ;
int f[N];
int main()
{
int n,i;
double s;
f[]=,f[]=;
for(i=;i<N;i++)//由于接下来利用公式得出来的Fibonacci数不是精确的,越小的数则越不精确,所以前面一些Fibonacci数需要自己算
f[i]=f[i-]+f[i-];
while(~scanf("%d",&n))
{
if(n<N)
{
printf("%d\n",f[n]);
continue;
}
s=log10(1.0/sqrt(5.0))+n*log10((+sqrt(5.0))/); //调用公式
s=s-(int)s; //取小数部分
s=pow(,s);
while(s<) //要求四位,所以要将小数点右边的数移到左边直到符合要求
s*=;
printf("%d\n",(int)s);
}
return ;
}

数学、公式

HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】的更多相关文章

  1. HDU 1568 快速求斐波那契前四位

    思路: 把斐波那契通项公式转化成log的形式,高中数学... //By SiriusRen #include <bits/stdc++.h> using namespace std; ], ...

  2. hdu1568&&hdu3117 求斐波那契数前四位和后四位

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568 题意:如标题所示,求斐波那契数前四位,不足四位直接输出答案 斐波那契数列通式: 当n<=2 ...

  3. C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55

    //C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55 using System; using System.Collections.Generic; using S ...

  4. C++求斐波那契数

    题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… ...

  5. POJ 3070(求斐波那契数 矩阵快速幂)

    题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...

  6. hdu 4983 线段树+斐波那契数

    http://acm.hdu.edu.cn/showproblem.php?pid=4893 三种操作: 1 k d, 修改k的为值增加d 2 l r, 查询l到r的区间和 3 l r, 从l到r区间 ...

  7. 求斐波那契数的python语言实现---递归和迭代

    迭代实现如下: def fab(n): n1 = 1 n2 = 1 if n<1: print("输入有误!") return -1 while (n-2)>0: n3 ...

  8. 数学算法(一):快速求斐波那契数第n项通过黄金分割率公式

    有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接 ...

  9. Problem R: 求斐波那契数列的前n项值

    #include<stdio.h> int main() { int n; while(scanf("%d",&n)!=EOF){ int x1,x2,i,x; ...

随机推荐

  1. 编译Kubelet二进制文件

    1. 环境 系统:CentOS 7.2 Go:1.10.3 Kubernetes:1.10.4 2. 安装最新版go 编译的Kubernetes 1.10.4要求go版本在1.9.3以上,使用下面的y ...

  2. postgreysql

    基础 syntax * \help 生成所有的pg命令 * abort 终止事务/work * alter aggregate 修改聚合函数的定义 ALTER AGGREGATE name ( typ ...

  3. mac攻略(九) -- ssh工具secureCRT

    mac ssh 客户端 : 本身mac直接使用终端来ssh连接就很方便,但是使用过程中随着远程服务器的增多和zsh和远程服务器编码不同产生了乱码,决定安装一款ssh终端软件,以下方法亲测可用,感谢提供 ...

  4. Core Java的那点事儿之ArrayList

    Core Java的那点事儿之ArrayList 万丈高楼平地起,Java基础要拿起.今天就从我看的Core Java里找了些小基础点来分享一下. 首先隆重介绍一下专业级龙套演员---Employee ...

  5. Java之基于Apache jar包的FTPClient上传

    首先,准备工作: http://pan.baidu.com/s/1dD1Utwt 从以上链接下载Apache的jar包,并将其复制到工程的WEB-INF下的lib包里,在此,准备工作就已经完成了. 具 ...

  6. IOS开发学习笔记025-xib和storyboard

    stotyboard : 描述软件界面,大范围,比较适合整个软件的所有界面 xib文件的使用:描述软件界面,小范围,比较适合描述小界面 在xcode新建文件窗口可以看到两个文件,storyboard和 ...

  7. IOS开发学习笔记013-内存管理

    内存管理 1.基本知识 2.关闭ARC机制 3.@property 4.循环引用 5.自动释放池 6.内存管理总结 一.基本知识 内存的分类 栈:局部变量 堆:动态申请的对象,变量等 全局(静态):s ...

  8. python - 接口自动化测试 - GetLog - 日志类封装

    # -*- coding:utf-8 -*- ''' @project: ApiAutoTest @author: Jimmy @file: get_logger.py @ide: PyCharm C ...

  9. 为什么对多线程编程这么怕?pthread,sem,mutex,process

    转自http://blog.chinaunix.net/uid-20788636-id-1841334.html 1.线程创建和退出创建线程实际上就是确定调用该线程函数的入口点,这里通常使用的函数是p ...

  10. docker镜像与docker容器的区别

    镜像的一个实例称为容器. 你有一个镜像,这是你描述的一组图层. 如果你开始这个镜像,你有一个运行这个镜像的容器. 您可以拥有许多相同镜像的正在运行的容器. docker images 查看所有镜像 d ...