HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】
Fibonacci
(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来。
接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验zouyu说的是否正确。
1
2
3
4
5
35
36
37
38
39
40
1
1
2
3
5
9227
1493
2415
3908
6324
1023
这是道神奇的题,求斐波那契数列的0到第100000000项的前四位,之前做过斐波那契数列的水题,求到63项
能用__int64解决,但是到100000000项的话用数组都会超时。
以下是大牛的解释:
先看对数的性质,loga(b^c)=c*loga(b),loga(b*c)=loga(b)+loga(c);
假设给出一个数10234432,那么log10(10234432)=log10(1.0234432*10^7)=log10(1.0234432)+7;
log10(1.0234432)就是log10(10234432)的小数部分.
log10(1.0234432)=0.010063744
10^0.010063744=1.023443198
那么要取几位就很明显了吧~
先取对数(对10取),然后得到结果的小数部分bit,pow(10.0,bit)以后如果答案还是<1000那么就一直乘10。
注意先处理了0~20项是为了方便。
这题要利用到数列的公式:an=(1/√5)
* [((1+√5)/2)^n-((1-√5)/2)^n](n=1,2,3.....)
其中f=(sqrt(5.0)+1.0)/2.0;
因为log10(1-((1-√5)/(1+√5))^n)趋近于0
所以可以写成log10(an)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0);
最后取其小数部分。
而我们要取Fibonacci数的前4位,可以通过计算以10为底的对数,原理与HDU 1060 Leftmost Digit是一样的,不妨可以点开看看
另外,需要提及的一点是前20项Fibonacci数需要自己计算,一方面是因为Fibonacci数未满4位,更重要的一点是Fibonacci数较小时,公式的精确度不高
比如第17项Fibonacci应该是1597,但公式求得的是1596;而19项Fibonacci应该是4181,但公式求得的是4180
因此,我们需要先自己计算出Fibonacci数的前19项。


#include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int N = ;
const int inf = ;
const int mod = ;
int f[N];
int main()
{
int n,i;
double s;
f[]=,f[]=;
for(i=;i<N;i++)//由于接下来利用公式得出来的Fibonacci数不是精确的,越小的数则越不精确,所以前面一些Fibonacci数需要自己算
f[i]=f[i-]+f[i-];
while(~scanf("%d",&n))
{
if(n<N)
{
printf("%d\n",f[n]);
continue;
}
s=log10(1.0/sqrt(5.0))+n*log10((+sqrt(5.0))/); //调用公式
s=s-(int)s; //取小数部分
s=pow(,s);
while(s<) //要求四位,所以要将小数点右边的数移到左边直到符合要求
s*=;
printf("%d\n",(int)s);
}
return ;
}
数学、公式
HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】的更多相关文章
- HDU 1568 快速求斐波那契前四位
思路: 把斐波那契通项公式转化成log的形式,高中数学... //By SiriusRen #include <bits/stdc++.h> using namespace std; ], ...
- hdu1568&&hdu3117 求斐波那契数前四位和后四位
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568 题意:如标题所示,求斐波那契数前四位,不足四位直接输出答案 斐波那契数列通式: 当n<=2 ...
- C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55
//C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55 using System; using System.Collections.Generic; using S ...
- C++求斐波那契数
题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… ...
- POJ 3070(求斐波那契数 矩阵快速幂)
题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...
- hdu 4983 线段树+斐波那契数
http://acm.hdu.edu.cn/showproblem.php?pid=4893 三种操作: 1 k d, 修改k的为值增加d 2 l r, 查询l到r的区间和 3 l r, 从l到r区间 ...
- 求斐波那契数的python语言实现---递归和迭代
迭代实现如下: def fab(n): n1 = 1 n2 = 1 if n<1: print("输入有误!") return -1 while (n-2)>0: n3 ...
- 数学算法(一):快速求斐波那契数第n项通过黄金分割率公式
有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接 ...
- Problem R: 求斐波那契数列的前n项值
#include<stdio.h> int main() { int n; while(scanf("%d",&n)!=EOF){ int x1,x2,i,x; ...
随机推荐
- VS2010Datatable查看器查看超时(Microsoft.VisualStudio.DebuggerVisualizers)
这个问题由来已久,却一直没有找到原因.大家都知道,VisualStudio的DebuggerVisualizers是一个非常方便的插件,可以帮助我们调试时查看Datatable视图,前阵子突然发现在查 ...
- proget Android代码混淆
混淆的时候,还要添加Android.jar,不然,你的程序一篇空白.我就吃了亏. 还有,activity是不能混淆的,因为AndroidMeaxinfast.xml里面会找他.
- opencv中的仿射变换
什么是仿射变换? 原理:1.一个任意的仿射变换都能表示为 乘以一个矩阵(线性变换) 接着再 加上一个向量(平移) 2.综上所述,我们能够用仿射变换来表示: 1)旋转(线性变换) 2)平移(向量加) 3 ...
- IOS开发学习笔记017-第一个IOS应用
第一个IOS应用程序,就从最简单的开始吧. 1.先了解一下开发环境,Xcode的相关组成 2.还有模拟器 3.运行与停止按钮 4.新建一个工程 5.看看main函数里都有啥 6.现在来添加一个控件 1 ...
- Python+Selenium基础篇之2-打开和关闭火狐浏览器
本节介绍如何初始化一个webdriver实例对象driver,然后打开和关闭firefox浏览器.要用selenium打开fiefox浏览器.首先需要去下载一个driver插件geckodriver. ...
- python学习-- settings 设置sqlserver连接
PyCharm 开发工具 先打开项目 1. ctrl+alt+s 2. project:项目名称 选中Project Interpreter,点右面+号 :搜索 django-pyodbc-az ...
- Webapp和后端交互检查测试
除了功能,我们可以使用下面方法,查看交互过程,页面不能发现的问题: 什么是json 什么是json,json是什么,json如何使用 JSON是一种取代XML的数据结构,和xml相比,它更小巧但描述能 ...
- WPF TextBlock 调整下划线与文字的距离
<TextBlock Foreground="> <TextBlock.TextDecorations> <TextDecorationCollection&g ...
- ubuntu16.04中docker安装curl拒绝连接问题
在Ubuntu16.04中安装docker ce,安装步骤按照官网说明https://docs.docker.com/engine/installation/linux/docker-ce/ubunt ...
- Vagrant Tip: Virtualbox Guest Additions
Vagrant Tip: Virtualbox Guest Additions 12 February 2016 Tired of seeing this message when you run v ...