loc 从特定的

gets rows (or columns) with particular labels from the index.

iloc gets rows (or columns) at particular positions in the index (so it only takes integers).

ix usually tries to behave like loc but falls back to behaving like iloc if a label is not present in the index.

It's important to note some subtleties that can make ix slightly tricky to use:

if the index is of integer type, ix will only use label-based indexing and not fall back to position-based indexing. If the label is not in the index, an error is raised.

if the index does not contain only integers, then given an integer, ix will immediately use position-based indexing rather than label-based indexing. If however ix is given another type (e.g. a string), it can use label-based indexing.

To illustrate the differences between the three methods, consider the following Series:

>>> s = pd.Series(np.nan, index=[49,48,47,46,45, 1, 2, 3, 4, 5])
>>> s
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN

We'll look at slicing with the integer value 3.

In this case, s.iloc[:3] returns us the first 3 rows (since it treats 3 as a position) and s.loc[:3] returns us the first 8 rows (since it treats 3 as a label):

>>> s.iloc[:3] # slice the first three rows
49 NaN
48 NaN
47 NaN
>>> s.loc[:3] # slice up to and including label 3
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN
>>> s.ix[:3] # the integer is in the index so s.ix[:3] works like loc
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN

Notice s.ix[:3] returns the same Series as s.loc[:3] since it looks for the label first rather than working on the position (and the index for s is of integer type).

What if we try with an integer label that isn't in the index (say 6)?

Here s.iloc[:6] returns the first 6 rows of the Series as expected. However, s.loc[:6] raises a KeyError since 6 is not in the index.

>>> s.iloc[:6]
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
>>> s.loc[:6]
KeyError: 6
>>> s.ix[:6]

KeyError: 6

As per the subtleties noted above, s.ix[:6] now raises a KeyError because it tries to work like loc but can't find a 6 in the index. Because our index is of integer type ix doesn't fall back to behaving like iloc.

If, however, our index was of mixed type, given an integer ix would behave like iloc immediately instead of raising a KeyError:

>>> s2 = pd.Series(np.nan, index=['a','b','c','d','e', 1, 2, 3, 4, 5])
>>> s2.index.is_mixed() # index is mix of different types

True

>>> s2.ix[:6] # now behaves like iloc given integer

a NaN

b NaN

c NaN

d NaN

e NaN

1 NaN

Keep in mind that ix can still accept non-integers and behave like loc:

>>> s2.ix[:'c'] # behaves like loc given non-integer

a NaN

b NaN

c NaN

As general advice, if you're only indexing using labels, or only indexing using integer positions, stick with loc or iloc to avoid unexpected results - try not use ix.

Combining position-based and label-based indexing

Sometimes given a DataFrame, you will want to mix label and positional indexing methods for the rows and columns.

For example, consider the following DataFrame. How best to slice the rows up to and including 'c' and take the first four columns?

>>> df = pd.DataFrame(np.nan,
index=list('abcde'),
columns=['x','y','z', 8, 9])
>>> df
x   y   z   8   9

a NaN NaN NaN NaN NaN

b NaN NaN NaN NaN NaN

c NaN NaN NaN NaN NaN

d NaN NaN NaN NaN NaN

e NaN NaN NaN NaN NaN

In earlier versions of pandas (before 0.20.0) ix lets you do this quite neatly - we can slice the rows by label and the columns by position (note that for the columns, ix will default to position-based slicing since 4 is not a column name):

>>> df.ix[:'c', :4]
x   y   z   8

a NaN NaN NaN NaN

b NaN NaN NaN NaN

c NaN NaN NaN NaN

In later versions of pandas, we can achieve this result using iloc and the help of another method:

>>> df.iloc[:df.index.get_loc('c') + 1, :4]
x   y   z   8

a NaN NaN NaN NaN

b NaN NaN NaN NaN

c NaN NaN NaN NaN

get_loc() is an index method meaning "get the position of the label in this index". Note that since slicing with iloc is exclusive of its endpoint, we must add 1 to this value if we want row 'c' as well.

There are further examples in pandas' documentation here.

注:

https://stackoverflow.com/questions/31593201/pandas-iloc-vs-ix-vs-loc-explanation-how-are-they-different

[译]pandas中的iloc loc的区别?的更多相关文章

  1. python pandas(ix & iloc &loc)

    python pandas(ix & iloc &loc) loc——通过行标签索引行数据 iloc——通过行号索引行数据 ix——通过行标签或者行号索引行数据(基于loc和iloc ...

  2. [译] Pandas中根据列的值选取多行数据

    # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column ...

  3. Pandas中Series与Dataframe的区别

    1. Series Series通俗来讲就是一维数组,索引(index)为每个元素的下标,值(value)为下标对应的值 例如: arr = ['Tom', 'Nancy', 'Jack', 'Ton ...

  4. Pandas中merge和join的区别

    可以说merge包含了join的操作,merge支持通过列或索引连表,而join只支持通过索引连表,只是简化了merge的索引连表的参数 示例 定义一个left的DataFrame left=pd.D ...

  5. pandas中loc-iloc-ix的使用

    转自:https://www.jianshu.com/p/d6a9845a0a34 Pandas中loc,iloc,ix的使用 使用 iloc 从DataFrame中筛选数据 iloc 是基于“位置” ...

  6. pandas中df.ix, df.loc, df.iloc 的使用场景以及区别

    pandas中df.ix, df.loc, df.iloc 的使用场景以及区别: https://stackoverflow.com/questions/31593201/pandas-iloc-vs ...

  7. pandas中DataFrame的ix,loc,iloc索引方式的异同

    pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在inde ...

  8. pandas-03 DataFrame()中的iloc和loc用法

    pandas-03 DataFrame()中的iloc和loc用法 简单的说: iloc,即index locate 用index索引进行定位,所以参数是整型,如:df.iloc[10:20, 3:5 ...

  9. Pandas中Series和DataFrame的索引

    在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...

随机推荐

  1. Delphi7使用二维码

    参考:http://jingyan.baidu.com/article/e75057f2ad6481ebc81a897b.html 首先下载对应的 dll (已经上传到博客园文件) 然后就是Delph ...

  2. Integer的一个小问题

    看面试题的时候看到这道题: public class Demo { public static void main(String[] args) { Integer i1 = 128; Integer ...

  3. XPath语法规则及实例

    XPath语法规则及实例 XPath语法规则 一.XPath术语: 1.节点:在XPath中,有七种类型的节点:元素.属性.文本.命名空间.处理指令.注释以及文档(根)节点. XML文档是被作为节点树 ...

  4. Python socket 粘包

    目录 1 TCP的三次握手四次挥手 0 1.1 三次握手 1 1.2 四次挥手 2 2 粘包现象 3 2.1 基于TCP制作远程执行命令操作(win服务端) 4 2.1 基于TCP制作远程执行命令操作 ...

  5. vs2015驱动开发中使用RtlStringCchPrintfW()报错

    法一: 在头顶添加一段代码 #pragam comment(lib,"xxxxxx.lib") 法二: 右击工程点属性,选择Linker下的Input,在依赖项后面写上$(DDK_ ...

  6. LINQ中AsEnumerable与AsQueryable的区别

    AsEnumerable将一个序列向上转换为一个IEnumerable, 强制将Enumerable类下面的查询操作符绑定到后续的子查询当中:AsQueryable将一个序列向下转换为一个IQuery ...

  7. 理解AttributeUsage类

    类定义: // 摘要: // 指定另一特性类的用法. 此类不能被继承. [Serializable] [AttributeUsage(AttributeTargets.Class, Inherited ...

  8. 自定义AlertView的方法和改变Alert的弹出位置以及其宽度

    此方法在IOS7中不适合 一.自定义AlertView 1.首先新建一个OC类继承与AlertView. 2.然后再.m中添加方法 - (void)layoutSubviews 可以再这个方法里边改变 ...

  9. ubuntu 16.04 +anaconda3.6 +Nvidia DRIVER 390.77 +CUDA9.0 +cudnn7.0.4+tensorflow1.5.0+neural-style

    这是我第一个人工智能实验.虽然原理不是很懂,但是觉得深度学习真的很有趣.教程如下. Table of Contents 配置 时间轴 前期准备工作 anaconda3 安装 bug 1:conda:未 ...

  10. 2018 noip 提高组初赛参考答案

    这里有pdf文件:戳这儿