loc 从特定的

gets rows (or columns) with particular labels from the index.

iloc gets rows (or columns) at particular positions in the index (so it only takes integers).

ix usually tries to behave like loc but falls back to behaving like iloc if a label is not present in the index.

It's important to note some subtleties that can make ix slightly tricky to use:

if the index is of integer type, ix will only use label-based indexing and not fall back to position-based indexing. If the label is not in the index, an error is raised.

if the index does not contain only integers, then given an integer, ix will immediately use position-based indexing rather than label-based indexing. If however ix is given another type (e.g. a string), it can use label-based indexing.

To illustrate the differences between the three methods, consider the following Series:

>>> s = pd.Series(np.nan, index=[49,48,47,46,45, 1, 2, 3, 4, 5])
>>> s
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN

We'll look at slicing with the integer value 3.

In this case, s.iloc[:3] returns us the first 3 rows (since it treats 3 as a position) and s.loc[:3] returns us the first 8 rows (since it treats 3 as a label):

>>> s.iloc[:3] # slice the first three rows
49 NaN
48 NaN
47 NaN
>>> s.loc[:3] # slice up to and including label 3
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN
>>> s.ix[:3] # the integer is in the index so s.ix[:3] works like loc
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN

Notice s.ix[:3] returns the same Series as s.loc[:3] since it looks for the label first rather than working on the position (and the index for s is of integer type).

What if we try with an integer label that isn't in the index (say 6)?

Here s.iloc[:6] returns the first 6 rows of the Series as expected. However, s.loc[:6] raises a KeyError since 6 is not in the index.

>>> s.iloc[:6]
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
>>> s.loc[:6]
KeyError: 6
>>> s.ix[:6]

KeyError: 6

As per the subtleties noted above, s.ix[:6] now raises a KeyError because it tries to work like loc but can't find a 6 in the index. Because our index is of integer type ix doesn't fall back to behaving like iloc.

If, however, our index was of mixed type, given an integer ix would behave like iloc immediately instead of raising a KeyError:

>>> s2 = pd.Series(np.nan, index=['a','b','c','d','e', 1, 2, 3, 4, 5])
>>> s2.index.is_mixed() # index is mix of different types

True

>>> s2.ix[:6] # now behaves like iloc given integer

a NaN

b NaN

c NaN

d NaN

e NaN

1 NaN

Keep in mind that ix can still accept non-integers and behave like loc:

>>> s2.ix[:'c'] # behaves like loc given non-integer

a NaN

b NaN

c NaN

As general advice, if you're only indexing using labels, or only indexing using integer positions, stick with loc or iloc to avoid unexpected results - try not use ix.

Combining position-based and label-based indexing

Sometimes given a DataFrame, you will want to mix label and positional indexing methods for the rows and columns.

For example, consider the following DataFrame. How best to slice the rows up to and including 'c' and take the first four columns?

>>> df = pd.DataFrame(np.nan,
index=list('abcde'),
columns=['x','y','z', 8, 9])
>>> df
x   y   z   8   9

a NaN NaN NaN NaN NaN

b NaN NaN NaN NaN NaN

c NaN NaN NaN NaN NaN

d NaN NaN NaN NaN NaN

e NaN NaN NaN NaN NaN

In earlier versions of pandas (before 0.20.0) ix lets you do this quite neatly - we can slice the rows by label and the columns by position (note that for the columns, ix will default to position-based slicing since 4 is not a column name):

>>> df.ix[:'c', :4]
x   y   z   8

a NaN NaN NaN NaN

b NaN NaN NaN NaN

c NaN NaN NaN NaN

In later versions of pandas, we can achieve this result using iloc and the help of another method:

>>> df.iloc[:df.index.get_loc('c') + 1, :4]
x   y   z   8

a NaN NaN NaN NaN

b NaN NaN NaN NaN

c NaN NaN NaN NaN

get_loc() is an index method meaning "get the position of the label in this index". Note that since slicing with iloc is exclusive of its endpoint, we must add 1 to this value if we want row 'c' as well.

There are further examples in pandas' documentation here.

注:

https://stackoverflow.com/questions/31593201/pandas-iloc-vs-ix-vs-loc-explanation-how-are-they-different

[译]pandas中的iloc loc的区别?的更多相关文章

  1. python pandas(ix & iloc &loc)

    python pandas(ix & iloc &loc) loc——通过行标签索引行数据 iloc——通过行号索引行数据 ix——通过行标签或者行号索引行数据(基于loc和iloc ...

  2. [译] Pandas中根据列的值选取多行数据

    # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column ...

  3. Pandas中Series与Dataframe的区别

    1. Series Series通俗来讲就是一维数组,索引(index)为每个元素的下标,值(value)为下标对应的值 例如: arr = ['Tom', 'Nancy', 'Jack', 'Ton ...

  4. Pandas中merge和join的区别

    可以说merge包含了join的操作,merge支持通过列或索引连表,而join只支持通过索引连表,只是简化了merge的索引连表的参数 示例 定义一个left的DataFrame left=pd.D ...

  5. pandas中loc-iloc-ix的使用

    转自:https://www.jianshu.com/p/d6a9845a0a34 Pandas中loc,iloc,ix的使用 使用 iloc 从DataFrame中筛选数据 iloc 是基于“位置” ...

  6. pandas中df.ix, df.loc, df.iloc 的使用场景以及区别

    pandas中df.ix, df.loc, df.iloc 的使用场景以及区别: https://stackoverflow.com/questions/31593201/pandas-iloc-vs ...

  7. pandas中DataFrame的ix,loc,iloc索引方式的异同

    pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在inde ...

  8. pandas-03 DataFrame()中的iloc和loc用法

    pandas-03 DataFrame()中的iloc和loc用法 简单的说: iloc,即index locate 用index索引进行定位,所以参数是整型,如:df.iloc[10:20, 3:5 ...

  9. Pandas中Series和DataFrame的索引

    在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...

随机推荐

  1. SQL 字符串函数

    http://www.w3cschool.cn/sql/sql-string-functions.html SQL 字符串函数 序号 Name Description 备注 1 ASCII() 返回最 ...

  2. 有一个无效 SelectedValue,因为它不在项目列表中

    “Drp_XX”有一个无效 SelectedValue,因为它不在项目列表中 出现以上异常的原因肯定是将DrowDownList控件的SelectedValue属性赋值为一个列表中不存在的值.那么我们 ...

  3. [Git]常用的Git命令行

    Commit的用法 git init [+项目名] git add . (注意这里在add后面的空格和点是不能省略的) git status git commit -m “message”(这里的me ...

  4. python基础教程总结10——文件

    1.打开文件 open(name[mode[,buffing])    参数:  文件,模式,缓冲 1)name: 是强制选项,模式和缓冲是可选的 #如果文件不在,会报下面错误1 >>&g ...

  5. sklearn 学习之分类树

    概要 基于 sklearn 包自带的 iris 数据集,了解一下分类树的各种参数设置以及代表的意义.   iris 数据集介绍 iris 数据集包含 150 个样本,对应数据集的每行数据,每行数据包含 ...

  6. Paper: TranE

    论文标题:Translating Embeddings for Modeling Multi-relational Data 标题翻译:多元关系数据翻译嵌入建模 摘要: 考虑多元关系数据的实体和关系在 ...

  7. 【转】瓜娃(guava)的API快速熟悉使用

    http://www.cnblogs.com/snidget/archive/2013/02/05/2893344.html 1,大纲 让我们来熟悉瓜娃,并体验下它的一些API,分成如下几个部分: I ...

  8. python之函数名的应用

    1. 函数名是一个特殊的变量 例题 例题1: a = 1 b = 2 c = a + b print(c) # 输出结果 3 # 总结 # 变量是否可以进行相加或者拼接操作是又后面指向的值来决定的,指 ...

  9. thinkphp的使用——隐藏index.php

    官方默认的.htaccess文件 <IfModule mod_rewrite.c>  Options +FollowSymlinks -Multiviews  RewriteEngine ...

  10. Python的ORM介绍

    实现方法: SQLOject peewee Django's ORM SQLAlchemy