[译]pandas中的iloc loc的区别?
loc 从特定的
gets rows (or columns) with particular labels from the index.
iloc gets rows (or columns) at particular positions in the index (so it only takes integers).
ix usually tries to behave like loc but falls back to behaving like iloc if a label is not present in the index.
It's important to note some subtleties that can make ix slightly tricky to use:
if the index is of integer type, ix will only use label-based indexing and not fall back to position-based indexing. If the label is not in the index, an error is raised.
if the index does not contain only integers, then given an integer, ix will immediately use position-based indexing rather than label-based indexing. If however ix is given another type (e.g. a string), it can use label-based indexing.
To illustrate the differences between the three methods, consider the following Series:
>>> s = pd.Series(np.nan, index=[49,48,47,46,45, 1, 2, 3, 4, 5])
>>> s
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN
We'll look at slicing with the integer value 3.
In this case, s.iloc[:3] returns us the first 3 rows (since it treats 3 as a position) and s.loc[:3] returns us the first 8 rows (since it treats 3 as a label):
>>> s.iloc[:3] # slice the first three rows
49 NaN
48 NaN
47 NaN
>>> s.loc[:3] # slice up to and including label 3
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN
>>> s.ix[:3] # the integer is in the index so s.ix[:3] works like loc
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN
Notice s.ix[:3] returns the same Series as s.loc[:3] since it looks for the label first rather than working on the position (and the index for s is of integer type).
What if we try with an integer label that isn't in the index (say 6)?
Here s.iloc[:6] returns the first 6 rows of the Series as expected. However, s.loc[:6] raises a KeyError since 6 is not in the index.
>>> s.iloc[:6]
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
>>> s.loc[:6]
KeyError: 6
>>> s.ix[:6]
KeyError: 6
As per the subtleties noted above, s.ix[:6] now raises a KeyError because it tries to work like loc but can't find a 6 in the index. Because our index is of integer type ix doesn't fall back to behaving like iloc.
If, however, our index was of mixed type, given an integer ix would behave like iloc immediately instead of raising a KeyError:
>>> s2 = pd.Series(np.nan, index=['a','b','c','d','e', 1, 2, 3, 4, 5])
>>> s2.index.is_mixed() # index is mix of different types
True
>>> s2.ix[:6] # now behaves like iloc given integer
a NaN
b NaN
c NaN
d NaN
e NaN
1 NaN
Keep in mind that ix can still accept non-integers and behave like loc:
>>> s2.ix[:'c'] # behaves like loc given non-integer
a NaN
b NaN
c NaN
As general advice, if you're only indexing using labels, or only indexing using integer positions, stick with loc or iloc to avoid unexpected results - try not use ix.
Combining position-based and label-based indexing
Sometimes given a DataFrame, you will want to mix label and positional indexing methods for the rows and columns.
For example, consider the following DataFrame. How best to slice the rows up to and including 'c' and take the first four columns?
>>> df = pd.DataFrame(np.nan,
index=list('abcde'),
columns=['x','y','z', 8, 9])
>>> df
x y z 8 9
a NaN NaN NaN NaN NaN
b NaN NaN NaN NaN NaN
c NaN NaN NaN NaN NaN
d NaN NaN NaN NaN NaN
e NaN NaN NaN NaN NaN
In earlier versions of pandas (before 0.20.0) ix lets you do this quite neatly - we can slice the rows by label and the columns by position (note that for the columns, ix will default to position-based slicing since 4 is not a column name):
>>> df.ix[:'c', :4]
x y z 8
a NaN NaN NaN NaN
b NaN NaN NaN NaN
c NaN NaN NaN NaN
In later versions of pandas, we can achieve this result using iloc and the help of another method:
>>> df.iloc[:df.index.get_loc('c') + 1, :4]
x y z 8
a NaN NaN NaN NaN
b NaN NaN NaN NaN
c NaN NaN NaN NaN
get_loc() is an index method meaning "get the position of the label in this index". Note that since slicing with iloc is exclusive of its endpoint, we must add 1 to this value if we want row 'c' as well.
There are further examples in pandas' documentation here.
[译]pandas中的iloc loc的区别?的更多相关文章
- python pandas(ix & iloc &loc)
python pandas(ix & iloc &loc) loc——通过行标签索引行数据 iloc——通过行号索引行数据 ix——通过行标签或者行号索引行数据(基于loc和iloc ...
- [译] Pandas中根据列的值选取多行数据
# 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column ...
- Pandas中Series与Dataframe的区别
1. Series Series通俗来讲就是一维数组,索引(index)为每个元素的下标,值(value)为下标对应的值 例如: arr = ['Tom', 'Nancy', 'Jack', 'Ton ...
- Pandas中merge和join的区别
可以说merge包含了join的操作,merge支持通过列或索引连表,而join只支持通过索引连表,只是简化了merge的索引连表的参数 示例 定义一个left的DataFrame left=pd.D ...
- pandas中loc-iloc-ix的使用
转自:https://www.jianshu.com/p/d6a9845a0a34 Pandas中loc,iloc,ix的使用 使用 iloc 从DataFrame中筛选数据 iloc 是基于“位置” ...
- pandas中df.ix, df.loc, df.iloc 的使用场景以及区别
pandas中df.ix, df.loc, df.iloc 的使用场景以及区别: https://stackoverflow.com/questions/31593201/pandas-iloc-vs ...
- pandas中DataFrame的ix,loc,iloc索引方式的异同
pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在inde ...
- pandas-03 DataFrame()中的iloc和loc用法
pandas-03 DataFrame()中的iloc和loc用法 简单的说: iloc,即index locate 用index索引进行定位,所以参数是整型,如:df.iloc[10:20, 3:5 ...
- Pandas中Series和DataFrame的索引
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...
随机推荐
- ALTER AVAILABILITY GROUP (Transact-SQL)
更改 SQL Server 中现有的 AlwaysOn 可用性组. 只有当前主副本支持大多数 ALTER AVAILABILITY GROUP 参数. 但是,只有辅助副本支持 ...
- asp页面无法访问,可尝试开始SQL Server等服务
存在问题 asp页面的英文提示,翻译后为: "一个错误发生在服务器在处理URL.请联系系统管理员(管理人).如果您是系统管理员,请点击这里了解更多关于这个错误." 解决方案 请 ...
- python基础教程总结11——图形用户界面GUI
1. 丰富的平台 工具包 描述 Tkinter 使用Tk平台.很容易得到.半标准. wxpython 基于wxWindows.跨平台越来越流行. PythonWin 只能在Windows上使用.使用了 ...
- Android(java)学习笔记129:对ListView等列表组件中数据进行增、删、改操作
1. ListView介绍 解决大量的相似的数据显示问题 采用了MVC模式: M: model (数据模型) V: view (显示的视图) C: controller 控制器 入门案例: aci ...
- [Tracking] KCF + KalmanFilter目标跟踪
基于KCF和MobileNet V2以及KalmanFilter的摄像头监测系统 简介 这是一次作业.Tracking这一块落后Detection很多年了,一般认为Detection做好了,那么只要能 ...
- 【转】OS X 中快速调出终端
作者:Frank Pu链接:https://www.zhihu.com/question/20692634/answer/37152883来源:知乎著作权归作者所有,转载请联系作者获得授权. 来至 M ...
- 服务器上搭建flowvisor平台
之前全是在virtualbox上的Ubuntu虚拟机上测试的ovs以及pox, 现在我们开始在服务器上开始了 两台服务器上的ovs均是1.4.6版本 遇到一个问题:之前装的ovs down了 然后什么 ...
- 解决xcode iOS真机调试正常,模拟器失败问题
今天早上遇到xcode的真机可以调试,但是模拟器却爆出一大堆错,提示错误是没有找到引用的代码文件,真机和模拟器的配置都是一样的, 准确来说,应该是除了指令以外,其他都死一样的配置,所以大概是指令配置上 ...
- 洛谷 P2127 序列排序
https://www.luogu.org/problemnew/show/P2127 感觉题解里写的比较复杂,可能自己的想法比较简单一点吧. 看这个图中的的点如果形成一个环,贪心的考虑,要想花费最少 ...
- 【思维题 并查集 图论】bzoj1576: [Usaco2009 Jan]安全路经Travel
有趣的思考题 Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第 ...