LR采用的Sigmoid函数与最大熵(ME) 的关系

从ME到LR

先直接给出最大熵模型的一般形式,后面再给出具体的推导过程。
\[\begin{align*}
P_w(y|x) &= \dfrac{1}{Z_w(x)}\exp\left(\sum_{i=1}^{n}w_if_i(x,y)\right)\\
\mbox{where } Z_w(x) &= \sum_y\exp\left(\sum_{i=1}^nw_if_i(x,y)\right)
\end{align*}\]
下面我们只考虑二分类问题,则有原式
\[\begin{align*}
P_w(y|X) &= \dfrac{\exp(W_0X)}{\exp(W_0X) + \exp(W_1X)}\\
&= \dfrac{1}{1 + \exp((W1-W0)X)}\\
&= \dfrac{1}{1 + \exp(WX)}
\end{align*}\]
这特么不就是用于二分类的Sigmoid函数么,也就是说LR采用Sigmoid函数除了因为Sigmoid函数具有一些漂亮的数学性质,比如\(f=sigmoid(x)\),那么\(f‘(x) =(1-f(x))*f(x)\),更重要的是这样找出来的模型是熵最大的。那么为什么要熵最大?最大熵原理是概率模型学习的一个准则,最大熵原理认为,学习概率模型时,在所有可能的概率模型(分布)中,熵最大的模型是最好的模型

最大熵模型推导

最大熵模型是一个带约束的最优化问题
\[\begin{align*}
E_{\tilde{P}}(f) &= E_{P}(f)\\
\mbox{where } E_{\tilde{P}}(f) &= \sum_{x,y}\tilde{P}(x,y)f(x,y)\\
\mbox{and } E_{P}(f) &= \sum_{x,y}\tilde{P}(x)P(y|x)f(x,y)
\end{align*}\]
目标函数为
\[
H(P) = -\sum_{x,y}\tilde{P}(x)P(y|x)\log P(y|x)
\]
写成更加正式的形式如下
\[\begin{align*}
\min_{P\in \mathcal{C}}& -H(P) = \sum_{x, y}\tilde{P}(x)P(y|x)\log P(y|x)\\
\mbox{s.t. }& E_{P}(f) - E_{\tilde{P}}(f) = 0 \\
&\sum_yP(y|x) = 1
\end{align*}\]

引入拉格朗日乘子有
\[\begin{align*}
L(P,w) &=-H(P) + w_0\left(1 - \sum_yP(y|x)\right) + \sum_{i=1}^nw_i(E_{\tilde{p}}(f_i)-E_P(f_i))\\
&= \sum_{x,y}\tilde{P}(x)P(y|x)\log P(y|x) + w_0\left(1 - \sum_y P(y|x)\right)\\
&+ \sum_{i=1}^nw_i\left(\sum_{x,y}\tilde{P}(x,y)f_i(x,y) - \sum_{x,y}\tilde{P}(x)P(y|x)f_i(x,y)\right)
\end{align*}\]

由原始问题的极小极大问题转为极大极小的对偶问题有
\[\begin{align*}
\dfrac{\partial L(P,w)}{\partial P(y|x)} &= \sum_{x,y}\tilde{P}(x)(\log P(y|x) + 1) - \sum_yw_0 -\sum_{x,y}\left(\tilde{P}(x)\sum_{i=1}^nw_if_i(x,y)\right)\\
&= \sum_{x,y}\tilde{P}(x)\left(\log P(y|x)+1-w_0-\sum_{i=1}^nw_if_i(x,y)\right)
\end{align*}\]

令其为0,解得
\[ P(y|x) = \exp\left(\sum_{i=1}^nw_if_i(x,y) +w_0 - 1\right) = \dfrac{\exp(\sum_{i=1}^nw_if_i(x,y))}{\exp(1-w_0)}\]

由于\[\sum_yP(y|x)=1\]有
\[ \exp(1-w_0) = \sum_y\exp\left(\sum_{i=1}^nw_if_i(x,y)\right)\]

即\[\begin{align*}
P_w(y|x) &= \dfrac{1}{Z_w(x)}\exp\left(\sum_{i=1}^nw_if_i(x,y)\right)\\
\mbox{where } Z_w(x) &= \sum_y\exp\left(\sum_{i=1}^nw_if_i(x,y)\right)
\end{align*}\]

看到这个形式的模型是不是突然就有一种似曾相识的感觉?对的,除了LR、ME以外,CRF也是这种形式的。这种模型有一个统一的的名称,对数线性模型。

LR采用的Sigmoid函数与最大熵(ME) 的关系的更多相关文章

  1. Logstic回归采用sigmoid函数的原因

    ##Logstic回归采用sigmoid函数的原因(sigmoid函数能表示二项分布概率的原因) sigmoid函数: ![](http://images2017.cnblogs.com/blog/1 ...

  2. Sigmoid函数与Softmax函数的理解

    1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线).               其中z ...

  3. sigmoid 函数与 softmax 函数

    sigmoid 函数与 softmax 函数     1. sigmoid 函数       sigmoid 函数又称:logistic函数,逻辑斯谛函数.其几何形状即为一条sigmoid曲线. lo ...

  4. 深度学习:Sigmoid函数与损失函数求导

    1.sigmoid函数 ​ sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: ​ 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 ...

  5. 交叉熵代价函数——当我们用sigmoid函数作为神经元的激活函数时,最好使用交叉熵代价函数来替代方差代价函数,以避免训练过程太慢

    交叉熵代价函数 machine learning算法中用得很多的交叉熵代价函数. 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigm ...

  6. 机器学习之sigmoid函数

      先说一下,ML小白. 这是第一次写个人博客类似东西, 主要来说说看 sigmoid 函数,sigmoid函数是机器学习中的一个比较常用的函数,与之类似的还有softplus和softmax等函数, ...

  7. Softmax与Sigmoid函数的联系

    译自:http://willwolf.io/2017/04/19/deriving-the-softmax-from-first-principles/ 本文的原始目标是探索softmax函数与sig ...

  8. Logistic 回归(sigmoid函数,手机的评价,梯度上升,批处理梯度,随机梯度,从疝气病症预测病马的死亡率

    (手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如 ...

  9. Sigmoid函数

    Sigmoid函数是一个S型函数. Sigmoid函数的数学公式为: 它是常微分方程 的一个解. Sigmoid函数具有如下基本性质: 定义域为 值域为, 为有界函数 函数在定义域内为连续和光滑函数 ...

随机推荐

  1. VC中包含的头文件名不区分大小写

    VC中包含的头文件名,不区分大小写如 #include "my.h" = #include "MY.H".

  2. 文末两大福利 | 微软Inspire大会全接触:微软发布Microsoft 365......

    在7月11日举行的“Inspire年度合作伙伴大会”上 ,微软首席执行官萨提亚·纳德拉发布了Microsoft 365. 它包含了:Office 365.Windows 10和企业移动性+安全性(En ...

  3. 为DataGridView控件实现复选功能

    实现效果: 知识运用: DataGridViewCheckBoxColumn类 实现代码: private class Fruit { public int Price { get; set; } p ...

  4. 用python Image读图

    https://www.cnblogs.com/kongzhagen/p/6295925.html import os name = [] with open('/media/hdc/xing/Dee ...

  5. shell脚本,awk在需要的行上打打印空行。

    注解: 判断每行中是否包含字母a,包含了,就将$1的值赋值给变量a,然后判断变量a是否存在,存在打印一个空行,在将变量的值使用空变量b赋值,最后在打印输出. 结果就是在包含有字符a的行上打印一个空行.

  6. PAT 乙级 1086

    题目 题目地址:PAT 乙级 1086 思路 本题比较简单,但还是存在小小的坑点,简单说一下: 倒置中需要注意的唯一问题就是:100倒置后不是001,而是1:这个问题处理之后还要注意另一个点就是,10 ...

  7. 好久没写了,总结一下lnux常用的命令(基础)

    Linux 1.init 0 关机 2.init 6  重启 3.ls 列出当前目录下的文件 4.cd  切换目录  cd -  切换最近使用的两次目录 5.pwd 查看当前所在的路径 (“-”为用户 ...

  8. vue-cli webpack配置cdn路径 以及 上线之后的字体文件跨域处理

    昨天搞了一下vue项目打包之后静态资源走阿里云cdn. 配置了半天,终于找到了设置的地方 config/index.js 里面设置build 下的 assetsPublicPath 打包的时候便可以添 ...

  9. vue $emit子组件传出多个参数,如何在父组件中在接收所有参数的同时添加自定义参数

    Vue.js 父子组件通信的十种方式 前言 很多时候用$emit携带参数传出事件,并且又需要在父组件中使用自定义参数时,这时我们就无法接受到子组件传出的参数了.找到了两种方法可以同时添加自定义参数的方 ...

  10. 【windows】共享文件夹设置

    控制面板\网络和 Internet\网络和共享中心\高级共享设置 在当前的域\公用\家庭网络 下文件和打印机共享开关打开 现在可以在 计算机-网络 里面看到共享的计算机啦 选中自己想要分享的文件,右键 ...