题目描述

The \(N\) cows (\(2 \leq N \leq 1,000\)) conveniently numbered \(1..N\) are grazing among the N pastures also conveniently numbered \(1..N\). Most conveniently of all, cow i is grazing in pasture i.

Some pairs of pastures are connected by one of \(N-1\)bidirectional walkways that the cows can traverse. Walkway i connects pastures \(A_i\)and \(B_i\) (\(1 \leq A_i \leq N; 1 \leq B_i \leq N\)) and has a length of \(L_i\) (\(1 \leq L_i \leq 10,000\)).

The walkways are set up in such a way that between any two distinct pastures, there is exactly one path of walkways that travels between them. Thus, the walkways form a tree.

The cows are very social and wish to visit each other often. Ever in a hurry, they want you to help them schedule their visits by computing the lengths of the paths between \(1 \leq L_i \leq 10,000\) pairs of pastures (each pair given as a query p1,p2 (\(1 \leq p1 \leq N; 1 \leq p2 \leq N\)).

POINTS: 200

有\(N(2<=N<=1000)\)头奶牛,编号为\(1\)到\(W\),它们正在同样编号为\(1\)到\(N\)的牧场上行走.为了方 便,我们假设编号为i的牛恰好在第\(i\)号牧场上.

有一些牧场间每两个牧场用一条双向道路相连,道路总共有\(N - 1\)条,奶牛可以在这些道路 上行走.第i条道路把第Ai个牧场和第Bi个牧场连了起来(\(1 \leq A_i \leq N; 1 \leq B_i \leq N\)),而它的长度 是 \(1 \leq L_i \leq 10,000\).在任意两个牧场间,有且仅有一条由若干道路组成的路径相连.也就是说,所有的道路构成了一棵树.

奶牛们十分希望经常互相见面.它们十分着急,所以希望你帮助它们计划它们的行程,你只 需要计算出Q(1 < Q < 1000)对点之间的路径长度•每对点以一个询问\(p1,p2\) (\(1 \leq p1 \leq N; 1 \leq p2 \leq N\)). 的形式给出.

输入输出格式

输入格式:

  • Line 1: Two space-separated integers: \(N\) and \(Q\)

  • Lines 2..N: Line i+1 contains three space-separated integers: \(A_i, B_i\), and \(L_i\)

  • Lines \(N+1..N+Q\): Each line contains two space-separated integers representing two distinct pastures between which the cows wish to travel: \(p1\) and \(p2\)

输出格式:

  • Lines \(1..Q\): Line i contains the length of the path between the two pastures in query \(i\).

输入输出样例

输入样例#1:

4 2
2 1 2
4 3 2
1 4 3
1 2
3 2

输出样例#1:

2
7

说明

Query \(1\): The walkway between pastures \(1\) and \(2\) has length \(2\).

Query \(2\): Travel through the walkway between pastures \(3\) and \(4\), then the one between \(4\) and 1, and finally the one between \(1\) and \(2\), for a total length of \(7\).

思路:题意就是让你求树上两点之间的距离,我们可以先求出这两个点的\(LCA\),然后发现它们之间的距离其实就是这两个点到根结点距离的和减去两倍的它们的\(LCA\)到根结点的距离。

代码:

#include<cstdio>
#include<algorithm>
#define maxn 1007
using namespace std;
int n,m,head[maxn],d[maxn],f[maxn][22],num,dis[maxn];
struct node {
int v,w,nxt;
}e[maxn<<1];
inline void ct(int u, int v, int w) {
e[++num].v=v;
e[num].w=w;
e[num].nxt=head[u];
head[u]=num;
}
void dfs(int u, int fa) {
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v!=fa) {
f[v][0]=u;
d[v]=d[u]+1;
dis[v]=dis[u]+e[i].w;
dfs(v,u);
}
}
}
inline int lca(int a, int b) {
if(d[a]>d[b]) swap(a,b);
for(int i=20;i>=0;--i)
if(d[a]<=d[b]-(1<<i)) b=f[b][i];
if(a==b) return a;
for(int i=20;i>=0;--i)
if(f[a][i]!=f[b][i]) a=f[a][i],b=f[b][i];
return f[a][0];
}
int main() {
scanf("%d%d",&n,&m);
for(int i=1,u,v,w;i<n;++i) {
scanf("%d%d%d",&u,&v,&w);
ct(u,v,w);ct(v,u,w);
}
dfs(1,0);
for(int j=1;j<=20;++j)
for(int i=1;i<=n;++i)
f[i][j]=f[f[i][j-1]][j-1];
for(int i=1,u,v;i<=m;++i) {
scanf("%d%d",&u,&v);
printf("%d\n",dis[u]+dis[v]-2*dis[lca(u,v)]);
}
return 0;
}

洛谷P2912 牧场散步Pasture Walking的更多相关文章

  1. 洛谷P2912 [USACO08OCT]牧场散步Pasture Walking [2017年7月计划 树上问题 01]

    P2912 [USACO08OCT]牧场散步Pasture Walking 题目描述 The N cows (2 <= N <= 1,000) conveniently numbered ...

  2. bzoj1602 / P2912 [USACO08OCT]牧场散步Pasture Walking(倍增lca)

    P2912 [USACO08OCT]牧场散步Pasture Walking 求树上两点间路径--->lca 使用倍增处理lca(树剖多长鸭) #include<iostream> # ...

  3. LCA || BZOJ 1602: [Usaco2008 Oct]牧场行走 || Luogu P2912 [USACO08OCT]牧场散步Pasture Walking

    题面:[USACO08OCT]牧场散步Pasture Walking 题解:LCA模版题 代码: #include<cstdio> #include<cstring> #inc ...

  4. 洛谷——P2912 [USACO08OCT]牧场散步Pasture Walking(lca)

    题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures ...

  5. 洛谷 P2912 [USACO08OCT]牧场散步Pasture Walking

    题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures ...

  6. BZOJ——1602: [Usaco2008 Oct]牧场行走 || 洛谷—— P2912 [USACO08OCT]牧场散步Pasture Walking

    http://www.lydsy.com/JudgeOnline/problem.php?id=1602 || https://www.luogu.org/problem/show?pid=2912 ...

  7. luogu P2912 [USACO08OCT]牧场散步Pasture Walking

    题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures ...

  8. [USACO08OCT]牧场散步Pasture Walking BZOJ1602 LCA

    题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures ...

  9. [luoguP2912] [USACO08OCT]牧场散步Pasture Walking(lca)

    传送门 水题. 直接倍增求lca. x到y的距离为dis[x] + dis[y] - 2 * dis[lca(x, y)] ——代码 #include <cstdio> #include ...

随机推荐

  1. 使用pidof/kill组合命令,变相解决mediaserver内存泄漏【转】

    本文转载自:https://blog.csdn.net/lj402159806/article/details/78950384 在5.1系统下mediaserver有内存泄漏的问题,原因在于使用ca ...

  2. GPIO设备虚拟文件结点的创建【转】

    本文转载自:http://blog.csdn.net/dwyane_zhang/article/details/6742066 所谓GPIO设备虚拟文件结点,就是方便用户在应用程序直接操纵GPIO的值 ...

  3. POJ2443 Set Operation —— bitset

    题目链接:https://vjudge.net/problem/POJ-2443 Set Operation Time Limit: 3000MS   Memory Limit: 65536K Tot ...

  4. Strom 消息处理机制 中英对照翻译 (Storm如何保证消息被完全处理)

    官方链接: http://storm.incubator.apache.org/documentation/Guaranteeing-message-processing.html What does ...

  5. TP框架控制器和对应方法创建

    控制器和对应方法创建 控制器是MVC模式中的核心,TP默认有一个控制器:   Index控制器里面有一个操作方法:Index   我们在访问http://localhost:8080/Thinkphp ...

  6. html5--2.1新的布局元素(1)-header/footer

    html5--2.1新的布局元素(1)-header/footer 学习要点 了解header/footer的语义和用法 使用header/footer进行一个简单的布局 header元素(标签) 用 ...

  7. Unity-2017.2官方实例教程Roll-a-ball(一)

    声明: 本文系转载,由于Unity版本不同,文中有一些小的改动,原文地址:http://www.jianshu.com/p/6e4b0435e30e Unity-2017.2官方实例教程Roll-a- ...

  8. Codeforces Gym 101190 NEERC 16 .L List of Primes(递归)

    ls特别喜欢素数,他总是喜欢把素数集合的所有子集写下来,并按照一定的顺序和格式.对于每一个子集,集合内 的元素在写下来时是按照升序排序的,对于若干个集合,则以集合元素之和作为第一关键字,集合的字典序作 ...

  9. CF785CAnton and Permutation(分块 动态逆序对)

    Anton likes permutations, especially he likes to permute their elements. Note that a permutation of  ...

  10. liunx让命令窗口显示段路径的方法

    平时我们使用linux终端命令行的时候,常常会被一个问题困扰,那就是文件路径过长,有时候甚至超过了一行,这样看起来非常别扭,其实只要两步就可以解决这个问题: 1,修改.bashrc文件(用户根目录下) ...