Local Response Normalization 60 million parameters and 500,000 neurons
CNN是工具,在图像识别中是发现图像中待识别对象的特征的工具,是剔除对识别结果无用信息的工具。
ImageNet Classification with Deep Convolutional Neural Networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
【侧抑制】
The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions.
https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/
Why do we need normalization layers in the first place?
A typical CNN consists of the following layers: convolution, pooling, rectified linear unit (ReLU), fully connected, and loss. If the previous sentence didn’t make sense, you may want to go through a quick CNN tutorial before proceeding further. Anyway, the reason we may want to have normalization layers in our CNN is that we want to have some kind of inhibition scheme.
In neurobiology, there is a concept called “lateral inhibition”. Now what does that mean? This refers to the capacity of an excited neuron to subdue its neighbors. We basically want a significant peak so that we have a form of local maxima. This tends to create a contrast in that area, hence increasing the sensory perception. Increasing the sensory perception is a good thing! We want to have the same thing in our CNNs.
What exactly is Local Response Normalization?
Local Response Normalization (LRN) layer implements the lateral inhibition we were talking about in the previous section. This layer is useful when we are dealing with ReLU neurons. Why is that? Because ReLU neurons have unbounded activations and we need LRN to normalize that. We want to detect high frequency features with a large response. If we normalize around the local neighborhood of the excited neuron, it becomes even more sensitive as compared to its neighbors.
At the same time, it will dampen the responses that are uniformly large in any given local neighborhood. If all the values are large, then normalizing those values will diminish all of them. So basically we want to encourage some kind of inhibition and boost the neurons with relatively larger activations. This has been discussed nicely in Section 3.3 of the original paper by Krizhevsky et al.
Local Response Normalization 60 million parameters and 500,000 neurons的更多相关文章
- 局部响应归一化(Local Response Normalization,LRN)
版权声明:本文为博主原创文章,欢迎转载,注明地址. https://blog.csdn.net/program_developer/article/details/79430119 一.LRN技术介 ...
- caffe中的Local Response Normalization (LRN)有什么用,和激活函数区别
http://stats.stackexchange.com/questions/145768/importance-of-local-response-normalization-in-cnn ca ...
- Local Response Normalization作用——对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力
AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过 ...
- LRN(local response normalization--局部响应标准化)
LRN全称为Local Response Normalization,即局部响应归一化层,LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法.这个函数很少使用 ...
- springmvc 使用 response 的注意事项以及解决500 空指针异常找不到 response 的方法
使用注解方式在类中(Controller)来装载request时,是可以正常使用request的(必须在启动时才注入,所以不支持热部署),但是同样使用这种方式在已经装载了 request的情况下装载 ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...
- 002-ImageNetClassificationDeep2017
ImageNet classification with deep convolutional neural networks #paper 1. paper-info 1.1 Metadata Au ...
- [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization
课程主页:http://cs231n.stanford.edu/ Introduction to neural networks -Training Neural Network ________ ...
随机推荐
- react-highcharts
import ReactHighcharts from'react-highcharts'; class SummaryLeft extends Component { render () {var ...
- AC日记——Number Sequence hdu 1711
Number Sequence Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- html --- rem
// rem (function(doc, win) { var docEle = doc.documentElement, evt = "onorientati ...
- es6 --数组--Array.from() 、Array.isArray()、Array.of()、find()、findIndex()、fill()、entries() 、keys() ,values()
将两类对象转为真正的数组 Array.from()方法用于将两类对象转为真正的数组:类似数组的对象(array-like object)和可遍历(iterable)的对象(包括ES6新增的数据结构Se ...
- springboot2.x整合redis实现缓存(附github链接)
本文代码已提交github: https://github.com/LCABC777/Springboot-redis(1)Springboot中使用redis操作的两种方式:lettuce和j ...
- 匿名块的四个类型(type rowtype record table)
Oracle PL/SQL块 匿名块的四个类型 type rowtype record table ---- type (列类型) %type类型是指声明变量的时候,参考某个表的某个列的类型---- ...
- c++中.dll与.lib文件的生成与使用的详解
两种库: • 包含了函数所在的DLL文件和文件中函数位置的信息(入口),代码由运行时加载在进程空间中的DLL提供,称为动态链接库dynamic link library.• 包含函数代码本身,在编译时 ...
- 查找——图文翔解SkipList(跳跃表)
跳跃表 跳跃列表(也称跳表)是一种随机化数据结构,基于并联的链表,其效率可比拟于二叉查找树(对于大多数操作须要O(logn)平均时间). 基本上.跳跃列表是对有序的链表添加上附加的前进链接,添加是以随 ...
- Objective C block背后的黑魔法
前言 block在Objective C开发中应用非常广泛,我们知道block会捕获外部对象,也知道使用block要防止循环引用. "知其然而不知其所以然"是一件非常痛苦的事情,那 ...
- windows xp下mysql5.0安装
安装注意要点: 1.不要安装在带有中文的安装路径 2.之前若有安装过mysql,请一定要卸载干净 MySQL安装的图解5.0.28 - CSDN