Local Response Normalization 60 million parameters and 500,000 neurons
CNN是工具,在图像识别中是发现图像中待识别对象的特征的工具,是剔除对识别结果无用信息的工具。
ImageNet Classification with Deep Convolutional Neural Networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
【侧抑制】
The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions.
https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/
Why do we need normalization layers in the first place?
A typical CNN consists of the following layers: convolution, pooling, rectified linear unit (ReLU), fully connected, and loss. If the previous sentence didn’t make sense, you may want to go through a quick CNN tutorial before proceeding further. Anyway, the reason we may want to have normalization layers in our CNN is that we want to have some kind of inhibition scheme.
In neurobiology, there is a concept called “lateral inhibition”. Now what does that mean? This refers to the capacity of an excited neuron to subdue its neighbors. We basically want a significant peak so that we have a form of local maxima. This tends to create a contrast in that area, hence increasing the sensory perception. Increasing the sensory perception is a good thing! We want to have the same thing in our CNNs.
What exactly is Local Response Normalization?
Local Response Normalization (LRN) layer implements the lateral inhibition we were talking about in the previous section. This layer is useful when we are dealing with ReLU neurons. Why is that? Because ReLU neurons have unbounded activations and we need LRN to normalize that. We want to detect high frequency features with a large response. If we normalize around the local neighborhood of the excited neuron, it becomes even more sensitive as compared to its neighbors.
At the same time, it will dampen the responses that are uniformly large in any given local neighborhood. If all the values are large, then normalizing those values will diminish all of them. So basically we want to encourage some kind of inhibition and boost the neurons with relatively larger activations. This has been discussed nicely in Section 3.3 of the original paper by Krizhevsky et al.
Local Response Normalization 60 million parameters and 500,000 neurons的更多相关文章
- 局部响应归一化(Local Response Normalization,LRN)
版权声明:本文为博主原创文章,欢迎转载,注明地址. https://blog.csdn.net/program_developer/article/details/79430119 一.LRN技术介 ...
- caffe中的Local Response Normalization (LRN)有什么用,和激活函数区别
http://stats.stackexchange.com/questions/145768/importance-of-local-response-normalization-in-cnn ca ...
- Local Response Normalization作用——对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力
AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过 ...
- LRN(local response normalization--局部响应标准化)
LRN全称为Local Response Normalization,即局部响应归一化层,LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法.这个函数很少使用 ...
- springmvc 使用 response 的注意事项以及解决500 空指针异常找不到 response 的方法
使用注解方式在类中(Controller)来装载request时,是可以正常使用request的(必须在启动时才注入,所以不支持热部署),但是同样使用这种方式在已经装载了 request的情况下装载 ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...
- 002-ImageNetClassificationDeep2017
ImageNet classification with deep convolutional neural networks #paper 1. paper-info 1.1 Metadata Au ...
- [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization
课程主页:http://cs231n.stanford.edu/ Introduction to neural networks -Training Neural Network ________ ...
随机推荐
- 小程序 之使用HMACSHA1算法加密报文
首先说说我们前端常用的加密技术, 我们常用的加密技术有:如MD5加密,base64加密 今天要说的是HMACSHA1加密技术 先介绍下什么是SHA1算法, 安全哈希算法(Secure Hash Alg ...
- BZOJ——2438: [中山市选2011]杀人游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=2438 Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个 ...
- 会话跟踪技术Cookieless
会话跟踪技术Cookieless 在Web应用中,通常使用Cookie记录用户的状态,如用户名.访问时间等信息.当进行HTTP请求的时候,会自动发送Cookie信息给服务器.服务器接收到,就可以判 ...
- Ampzz 2011 Cross Spider 计算几何
原题链接:http://codeforces.com/gym/100523/attachments/download/2798/20142015-ct-s02e07-codeforces-traini ...
- Jackson反序列化错误:com.fasterxml.jackson.databind.exc.UnrecognizedPropertyException: Unrecognized field的解决方法
说明:出现这种问题的情况是由于JSON里面包含了实体没有的字段导致反序列化失败. 解决方法: // 第一种解决方案 // ObjectMapper对象添加 mapper.configure(Deser ...
- SQL Server 2008 镜像的监控 - Joe.TJ -
http://www.cnblogs.com/Joe-T/archive/2012/09/06/2673237.html
- cocos2d-x step by step(1) First Blood
下了cocos2d-x 源码,开搞! 首先,笔者本身 1) 5年没有摸过c++了 2) 没用过cocos2d-x 3) 有强烈的求知欲望(这条每个简历个人介绍不都这么写么, ...
- Projective Texture的原理与实现 【转】
Projective Texture是比较常见的一种技术,实现起来代码也就区区的不过百行,了解其原理及技术细节是我们的重点,知其然,知其所以然. 粗略的说就是想象场景 ...
- 第十讲_图像检索 Image Retrieval
第十讲_图像检索 Image Retrieval 刚要 主要是图像预处理和特征提取+相似度计算 相似颜色检索 算法结构 颜色特征提取:统计图片的颜色成分 颜色特征相似度计算 色差距离 发展:欧式距离- ...
- 第四讲_图像识别之图像分类Image Classification
第四讲_图像识别之图像分类Image Classification 目录 图片分类 性能指标:top1,top5 ILSVRC:每种任务数据集不一样 imageNet:根据WorldNet组织的图片集 ...