CNN是工具,在图像识别中是发现图像中待识别对象的特征的工具,是剔除对识别结果无用信息的工具。

ImageNet Classification with Deep Convolutional Neural Networks

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

http://caffe.berkeleyvision.org/tutorial/layers/lrn.html

【侧抑制】

The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions.

https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/

Why do we need normalization layers in the first place?

A typical CNN consists of the following layers: convolution, pooling, rectified linear unit (ReLU), fully connected, and loss. If the previous sentence didn’t make sense, you may want to go through a quick CNN tutorial before proceeding further. Anyway, the reason we may want to have normalization layers in our CNN is that we want to have some kind of inhibition scheme.

In neurobiology, there is a concept called “lateral inhibition”. Now what does that mean? This refers to the capacity of an excited neuron to subdue its neighbors. We basically want a significant peak so that we have a form of local maxima. This tends to create a contrast in that area, hence increasing the sensory perception. Increasing the sensory perception is a good thing! We want to have the same thing in our CNNs.

What exactly is Local Response Normalization?

Local Response Normalization (LRN) layer implements the lateral inhibition we were talking about in the previous section. This layer is useful when we are dealing with ReLU neurons. Why is that? Because ReLU neurons have unbounded activations and we need LRN to normalize that. We want to detect high frequency features with a large response. If we normalize around the local neighborhood of the excited neuron, it becomes even more sensitive as compared to its neighbors.

At the same time, it will dampen the responses that are uniformly large in any given local neighborhood. If all the values are large, then normalizing those values will diminish all of them. So basically we want to encourage some kind of inhibition and boost the neurons with relatively larger activations. This has been discussed nicely in Section 3.3 of the original paper by Krizhevsky et al.

Local Response Normalization 60 million parameters and 500,000 neurons的更多相关文章

  1. 局部响应归一化(Local Response Normalization,LRN)

     版权声明:本文为博主原创文章,欢迎转载,注明地址. https://blog.csdn.net/program_developer/article/details/79430119 一.LRN技术介 ...

  2. caffe中的Local Response Normalization (LRN)有什么用,和激活函数区别

    http://stats.stackexchange.com/questions/145768/importance-of-local-response-normalization-in-cnn ca ...

  3. Local Response Normalization作用——对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力

    AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过 ...

  4. LRN(local response normalization--局部响应标准化)

    LRN全称为Local Response Normalization,即局部响应归一化层,LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法.这个函数很少使用 ...

  5. springmvc 使用 response 的注意事项以及解决500 空指针异常找不到 response 的方法

    使用注解方式在类中(Controller)来装载request时,是可以正常使用request的(必须在启动时才注入,所以不支持热部署),但是同样使用这种方式在已经装载了 request的情况下装载  ...

  6. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  7. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  8. 002-ImageNetClassificationDeep2017

    ImageNet classification with deep convolutional neural networks #paper 1. paper-info 1.1 Metadata Au ...

  9. [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization

    课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ________ ...

随机推荐

  1. 标准C程序设计七---73

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  2. Integration_Unit test coding standard

    Integration & Unit test coding standard 命名规则 好的命名规则,直接从命名就可以清楚的知道该测试方法测试的内容和目的,而不用额外的添加注释说明.对于MV ...

  3. 在github上创建自己的代码仓库

    git用了很久了,github也用很久了,但一直都是使用别人的项目, 最近想把自己写的一些代码放到自己的帐号上去 以为就是很简单的代码推送,真正做一次时候才发现,原来坑还不少呢, 就把这次的经历记录一 ...

  4. js遍历map匹配数据和js遍历数组匹配map数据

    var __LocalDataCities = { list: { "010": ["北京", "BEIJING"], "0100 ...

  5. idea的快捷键和操作

    IntelliJ Idea 常用快捷键列表   修改方法如下: 点击 文件菜单(File) –> 点击 设置(Settings… Ctrl+Alt+S), –> 打开设置对话框. 在左侧的 ...

  6. 【redis】4.spring boot集成redis,实现数据缓存

    参考地址:https://spring.io/guides/gs/messaging-redis/ ================================================== ...

  7. socket阻塞与非阻塞,同步与异步I/O模型

    作者:huangguisu 原文出处:http://blog.csdn.NET/hguisu/article/details/7453390 socket阻塞与非阻塞,同步与异步 1. 概念理解 在进 ...

  8. 【转】supervisord使用

    Supervisor (http://supervisord.org) 是一个用 Python 写的进程管理工具,可以很方便的用来启动.重启.关闭进程(不仅仅是 Python 进程).除了对单个进程的 ...

  9. redis主从连接不成功错误

    redis主从连接不成功错误 学习了:https://blog.csdn.net/wzqzhq/article/details/64919133 需要增加 masterauth  password.. ...

  10. mybatis表名反射实体

    package com.eshore.wbtimer.executor.service.impl; import com.baomidou.mybatisplus.mapper.EntityWrapp ...