CNN是工具,在图像识别中是发现图像中待识别对象的特征的工具,是剔除对识别结果无用信息的工具。

ImageNet Classification with Deep Convolutional Neural Networks

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

http://caffe.berkeleyvision.org/tutorial/layers/lrn.html

【侧抑制】

The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions.

https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/

Why do we need normalization layers in the first place?

A typical CNN consists of the following layers: convolution, pooling, rectified linear unit (ReLU), fully connected, and loss. If the previous sentence didn’t make sense, you may want to go through a quick CNN tutorial before proceeding further. Anyway, the reason we may want to have normalization layers in our CNN is that we want to have some kind of inhibition scheme.

In neurobiology, there is a concept called “lateral inhibition”. Now what does that mean? This refers to the capacity of an excited neuron to subdue its neighbors. We basically want a significant peak so that we have a form of local maxima. This tends to create a contrast in that area, hence increasing the sensory perception. Increasing the sensory perception is a good thing! We want to have the same thing in our CNNs.

What exactly is Local Response Normalization?

Local Response Normalization (LRN) layer implements the lateral inhibition we were talking about in the previous section. This layer is useful when we are dealing with ReLU neurons. Why is that? Because ReLU neurons have unbounded activations and we need LRN to normalize that. We want to detect high frequency features with a large response. If we normalize around the local neighborhood of the excited neuron, it becomes even more sensitive as compared to its neighbors.

At the same time, it will dampen the responses that are uniformly large in any given local neighborhood. If all the values are large, then normalizing those values will diminish all of them. So basically we want to encourage some kind of inhibition and boost the neurons with relatively larger activations. This has been discussed nicely in Section 3.3 of the original paper by Krizhevsky et al.

Local Response Normalization 60 million parameters and 500,000 neurons的更多相关文章

  1. 局部响应归一化(Local Response Normalization,LRN)

     版权声明:本文为博主原创文章,欢迎转载,注明地址. https://blog.csdn.net/program_developer/article/details/79430119 一.LRN技术介 ...

  2. caffe中的Local Response Normalization (LRN)有什么用,和激活函数区别

    http://stats.stackexchange.com/questions/145768/importance-of-local-response-normalization-in-cnn ca ...

  3. Local Response Normalization作用——对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力

    AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过 ...

  4. LRN(local response normalization--局部响应标准化)

    LRN全称为Local Response Normalization,即局部响应归一化层,LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法.这个函数很少使用 ...

  5. springmvc 使用 response 的注意事项以及解决500 空指针异常找不到 response 的方法

    使用注解方式在类中(Controller)来装载request时,是可以正常使用request的(必须在启动时才注入,所以不支持热部署),但是同样使用这种方式在已经装载了 request的情况下装载  ...

  6. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  7. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  8. 002-ImageNetClassificationDeep2017

    ImageNet classification with deep convolutional neural networks #paper 1. paper-info 1.1 Metadata Au ...

  9. [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization

    课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ________ ...

随机推荐

  1. linux内核栈与用户栈【转】

    转自:http://19880512.blog.51cto.com/936364/274610 最近linux内核的中断部分,总是被书里的栈弄晕,一会儿内核栈,一会儿用户栈的……很是崩溃,在网上goo ...

  2. mysql利用sql脚本插入数据中文乱码

    将其中的 /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;/*!40101 SET @OLD_CHARACTER_SE ...

  3. delphi 四舍五入Round函数【百帖整理】

    在最近版本的Delphi Pascal 编译器中,Round 函数是以 CPU 的 FPU (浮点部件) 处理器为基础的.这种处理器采用了所谓的 "银行家舍入法",即对中间值 (如 ...

  4. AC日记——猴子 cogs 2043

    2043. 猴子 ★★   输入文件:monkeya.in   输出文件:monkeya.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 有n只猴子,第一只尾巴挂在树上 ...

  5. 最小生成树-prim算法模板

    题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<= ...

  6. [转载][FPGA]Quartus代码保护-生成网表文件

    0. 简介 当项目过程中,不想给甲方源码时,该如何?我们可以用网表文件qxp或者vqm对资源进行保护. 下面讲解这两个文件的具体生成步骤: 1. 基本概念 QuartusII的qxp文件为Quartu ...

  7. HtmlEmail实现简单发送邮件

    一般发送邮件的话系统项目中可能会用到,像一些通知信息自动发送等,会用到发送邮件的情况,发送邮件有好多种,包括设置各种格式,添加图片附件等,当然今天我们先看一下怎么实现发送成功. 工欲善其事必先利其器, ...

  8. DTrace Oracle Database

    http://d.hatena.ne.jp/yohei-a/20100515/1273954199 DTrace で Oracle Database のサーバー・プロセスをトレースしてみた Oracl ...

  9. 采用scp命令在Linux系统之间copy文件

    不同的Linux之间copy文件常用有3种方法,第一种就是ftp,也就是其中一台Linux安装ftp Server,这样可以另外一台使用ftp的client程序来进行文件的copy.第二种方法就是采用 ...

  10. Linux 主机被入侵后的处理案例

    Linux主机被入侵后的处理案例 提交 我的留言 加载中 已留言 一次Linux被入侵后的分析 下面通过一个案例介绍下当一个服务器被rootkit入侵后的处理思路和处理过程,rootkit攻击是Lin ...