Common Subsequence
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 46630   Accepted: 19154

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming contest
abcd mnp

Sample Output

4
2
0

Java AC 代码:

import java.util.Scanner;

public class Main {

    public static void main(String[] args) {

        Scanner sc = new Scanner(System.in);
String first = "";
String second = "";
while(!(first = sc.next()).equals("") && !(second = sc.next()).equals("")) {
char[] firstArray = first.toCharArray();
char[] secondArray = second.toCharArray();
int firstLen = first.length();
int secondLen = second.length();
int[][] subMaxLen = new int[firstLen + 1][secondLen + 1]; //这里设置成长度加1的,是为了防止下面 i-1 j-1的时候数组越界。
for(int i = 1; i <= firstLen; i++)
for(int j = 1; j <= secondLen; j++) {
if(firstArray[i - 1] == secondArray[j - 1])
subMaxLen[i][j] = subMaxLen[i - 1][j - 1] + 1;
else
subMaxLen[i][j] = (subMaxLen[i - 1][j] > subMaxLen[i][j - 1] ? subMaxLen[i - 1][j] : subMaxLen[i][j - 1]);
}
System.out.println(subMaxLen[firstLen][secondLen]);
} } }

poj 1458 Common Subsequence(dp)的更多相关文章

  1. POJ 1458 Common Subsequence (DP+LCS,最长公共子序列)

    题意:给定两个字符串,让你找出它们之间最长公共子序列(LCS)的长度. 析:很明显是个DP,就是LCS,一点都没变.设两个序列分别为,A1,A2,...和B1,B2..,d(i, j)表示两个字符串L ...

  2. POJ 1458 Common Subsequence(LCS最长公共子序列)

    POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...

  3. POJ 1458 Common Subsequence (动态规划)

    题目传送门 POJ 1458 Description A subsequence of a given sequence is the given sequence with some element ...

  4. POJ 1458 Common Subsequence(最长公共子序列)

    题目链接Time Limit: 1000MS Memory Limit: 10000K Total Submissions: Accepted: Description A subsequence o ...

  5. poj 1458 Common Subsequence(区间dp)

    题目链接:http://poj.org/problem?id=1458 思路分析:经典的最长公共子序列问题(longest-common-subsequence proble),使用动态规划解题. 1 ...

  6. poj 1458 Common Subsequence ——(LCS)

    虽然以前可能接触过最长公共子序列,但是正规的写应该还是第一次吧. 直接贴代码就好了吧: #include <stdio.h> #include <algorithm> #inc ...

  7. LCS POJ 1458 Common Subsequence

    题目传送门 题意:输出两字符串的最长公共子序列长度 分析:LCS(Longest Common Subsequence)裸题.状态转移方程:dp[i+1][j+1] = dp[i][j] + 1; ( ...

  8. (线性dp,LCS) POJ 1458 Common Subsequence

    Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 65333   Accepted: 27 ...

  9. POJ - 1458 Common Subsequence DP最长公共子序列(LCS)

    Common Subsequence A subsequence of a given sequence is the given sequence with some elements (possi ...

随机推荐

  1. CSS操作表格的边框和表格的属性示例代码

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. WPF Visifire 图表控件

    Visifire WPF 图表控件 破解 可能用WPF生成过图表的开发人员都知道,WPF虽然本身的绘图能力强大,但如果每种图表都自己去实现一次的话可能工作量就大了, 尤其是在开发时间比较紧的情况下.这 ...

  3. Jenkins笔录

    1.Linux下安装jdk8的方法 ,只需要一条命令就可以安装jdk: yum install java-1.8.0-openjdk* -y 执行过这条命令无需配置,直接可以使用. 2.JDK12版本 ...

  4. Kafka集群安裝部署(自带Zookeeper)

    kafka简介 kafka官网:http://kafka.apache.org/ kafka下载页面:http://kafka.apache.org/downloads kafka配置快速入门:htt ...

  5. easyui datagrid checkbox复选框取消单击选中事件、初始全选全不选等问题解决

    系统业务需要,导入的列表数据默认全部选中,且不可取消选中行.全部店铺优惠券发放过后导入的数据全部清空.如图所示: 一.初始化页面默认全部选中“selectAll”,全部不选中“unselectAll” ...

  6. springMVC异常处理总结

    a.ExceptionHandlerExceptionResolver 1.@ExceptionHandler --- 统一处理一个controller中(@ExceptionHandler所在con ...

  7. hue改下载行数

    参考: https://blog.csdn.net/lingbo229/article/details/85991230 修改hue所在机器的默认配置后,重启hue即可 find / -name be ...

  8. NumPy进阶

    数组算术 任何两个等尺寸数组之间的算术操作都应用了逐元素操作的方式. arr1 = np.array([[1,2,3],[4,5,6]]) arr2 = np.array([[4,2,1],[7,2, ...

  9. python 爬虫--下载图片,下载音乐

    #下载图片 imgUrl='http://www.pptbz.com/pptpic/UploadFiles_6909/201211/2012111719294197.jpg' r=requests.g ...

  10. 第1章 Java开发入门

    一.填空题 1.Java SE.Java EE.Java ME 2.JRE 3.javac 4.bin 5.path.-class path 二.判断题 1.√ 2.× JDK: java devel ...