BZOJ 3270: 博物馆 概率与期望+高斯消元
和游走挺像的,都是将概率转成期望出现的次数,然后拿高斯消元来解.
#include <bits/stdc++.h>
#define N 23
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
double in[N],out[N],f[N*N][N*N];
int G[N][N],deg[N],idx[N][N],tot;
void Gauss(int n)
{
int i,j,k,now;
for(i=1;i<=n;++i)
{
now=i;
for(j=i;j<=n;++j)
{
if(fabs(f[j][i])>fabs(f[now][i])) now=j;
}
if(now!=i)
{
for(j=1;j<=n;++j) swap(f[i][j],f[now][j]);
}
if(f[i][i])
{
for(j=i+1;j<=n+1;++j) f[i][j]/=f[i][i];
f[i][i]=1;
}
for(j=i+1;j<=n;++j)
{
double div=f[j][i];
for(k=i+1;k<=n+1;++k) f[j][k]-=div*f[i][k];
f[j][i]=0;
}
}
for(i=n;i>=1;--i)
{
for(j=i+1;j<=n;++j)
{
f[i][n+1]-=f[j][n+1]*f[i][j];
}
}
}
int main()
{
// setIO("input");
int n,i,j,m,A,B;
scanf("%d%d%d%d",&n,&m,&A,&B);
for(i=1;i<=m;++i)
{
int u,v;
scanf("%d%d",&u,&v),G[u][v]=G[v][u]=1,++deg[u],++deg[v];
}
for(i=1;i<=n;++i) scanf("%lf",&in[i]), out[i]=(1-in[i])/(1.0*deg[i]);
for(i=1;i<=n;++i) G[i][i]=1;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j) idx[i][j]=++tot;
}
f[idx[A][B]][tot+1]=-1;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
int cur=idx[i][j];
f[cur][cur]=-1;
for(int x=1;x<=n;++x)
{
for(int y=1;y<=n;++y)
{
if(x==y||!G[i][x]||!G[j][y]) continue;
int id=idx[x][y];
if(i==x&&j==y)
{
f[cur][id]+=in[i]*in[j];
}
else if(i==x&&j!=y)
{
f[cur][id]+=in[x]*out[y];
}
else if(i!=x&&j==y)
{
f[cur][id]+=out[x]*in[y];
}
else
{
f[cur][id]+=out[x]*out[y];
}
}
}
}
}
Gauss(tot);
for(i=1;i<=n;++i)
{
printf("%.6f ",f[idx[i][i]][tot+1]);
}
return 0;
}
BZOJ 3270: 博物馆 概率与期望+高斯消元的更多相关文章
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- BZOJ 3143 游走(贪心+期望+高斯消元)
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- l洛谷 P6030 [SDOI2012]走迷宫 概率与期望+高斯消元
题目描述 传送门 分析 首先判掉 \(INF\) 的情况 第一种情况就是不能从 \(s\) 走到 \(t\) 第二种情况就是从 \(s\) 出发走到了出度为 \(0\) 的点,这样就再也走不到 \(t ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 概率与期望+高斯消元
这个还挺友好的,自己相对轻松能想出来~令 $f[i]$ 表示起点到点 $i$ 的期望次数,则 $ans[i]=f[i]\times \frac{p}{q}$ #include <cmath> ...
- BZOJ 3143 游走 | 数学期望 高斯消元
啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下 ...
- 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元
[题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...
- 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
- BZOJ 3270: 博物馆 [概率DP 高斯消元]
http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...
随机推荐
- CSP 通信网络(201709-4)
问题描述 某国的军队由N个部门组成,为了提高安全性,部门之间建立了M条通路,每条通路只能单向传递信息,即一条从部门a到部门b的通路只能由a向b传递信息.信息可以通过中转的方式进行传递,即如果a能将信息 ...
- 【转载】Python第三方库资源
转自:https://weibo.com/ttarticle/p/show?id=2309404129469920071093 参考:https://github.com/jobbole/awesom ...
- Java 常提到的自然序(Natural Ordering)
Natural Ordering常在容器中被提到,和迭代器一起出现. 在Comparable接口的API规范中找到了描述. (https://docs.oracle.com/javase/8/docs ...
- hdu 6025(女生赛)
典型的用空间换取时间的思想 关键要理解多个数怎么算最小公倍数 用一个前缀 一个后缀 然后枚举去掉的点就可以了 #include <iostream> #include <cstdio ...
- Scala学习六——对象
一.本章要点 用对象作为但例或存放工具的方法 类可以拥有一个同名的伴生对象 对象可以扩展类或特质 对象的apply方法通常用来构造伴生类的新实例 如果不想显示定义main方法,可以扩展App特质的对象 ...
- C#键盘事件
一: protected override void OnKeyDown(KeyEventArgs e) { if (e.Key==Key.Enter) { sendAppToServer(); } ...
- linux mint 安装微信
安装nodejs 到nodejs官网下载node js压缩包,然后解压到自己设置的目录.我的解压路径是 /home/congwiny/Develop/SoftWare/node-v6.10.3-lin ...
- HTML5之动画优化(requestAnimationFrame)
定时器setInterval实现的匀速动画为什么不是匀速? window.requestAnimationFrame() 一.定时器setInterval实现的匀速动画为什么不是匀速? 以上提问并非通 ...
- vue进阶:vs code添加vue代码片段
如何设置? 选择或创建 配置代码 如何使用? 一.如何设置? 进入vs code主界面-->使用快捷键“ctrl + shift + p”: 如果你是使用Preferences:Configur ...
- 采购订单保存生成PO号后增强点。
EXIT_SAPMM06E_013 这个增强可用于生成的PO后,调用外部接口把变更或生成的PO信息下发出去. 这里面的参数 I_EKKO 是新的抬头 I_EKKO_OLD 是更改前的抬头 XEKPO ...