和游走挺像的,都是将概率转成期望出现的次数,然后拿高斯消元来解.

#include <bits/stdc++.h>
#define N 23
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
double in[N],out[N],f[N*N][N*N];
int G[N][N],deg[N],idx[N][N],tot;
void Gauss(int n)
{
int i,j,k,now;
for(i=1;i<=n;++i)
{
now=i;
for(j=i;j<=n;++j)
{
if(fabs(f[j][i])>fabs(f[now][i])) now=j;
}
if(now!=i)
{
for(j=1;j<=n;++j) swap(f[i][j],f[now][j]);
}
if(f[i][i])
{
for(j=i+1;j<=n+1;++j) f[i][j]/=f[i][i];
f[i][i]=1;
}
for(j=i+1;j<=n;++j)
{
double div=f[j][i];
for(k=i+1;k<=n+1;++k) f[j][k]-=div*f[i][k];
f[j][i]=0;
}
}
for(i=n;i>=1;--i)
{
for(j=i+1;j<=n;++j)
{
f[i][n+1]-=f[j][n+1]*f[i][j];
}
}
}
int main()
{
// setIO("input");
int n,i,j,m,A,B;
scanf("%d%d%d%d",&n,&m,&A,&B);
for(i=1;i<=m;++i)
{
int u,v;
scanf("%d%d",&u,&v),G[u][v]=G[v][u]=1,++deg[u],++deg[v];
}
for(i=1;i<=n;++i) scanf("%lf",&in[i]), out[i]=(1-in[i])/(1.0*deg[i]);
for(i=1;i<=n;++i) G[i][i]=1;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j) idx[i][j]=++tot;
}
f[idx[A][B]][tot+1]=-1;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
int cur=idx[i][j];
f[cur][cur]=-1;
for(int x=1;x<=n;++x)
{
for(int y=1;y<=n;++y)
{
if(x==y||!G[i][x]||!G[j][y]) continue;
int id=idx[x][y];
if(i==x&&j==y)
{
f[cur][id]+=in[i]*in[j];
}
else if(i==x&&j!=y)
{
f[cur][id]+=in[x]*out[y];
}
else if(i!=x&&j==y)
{
f[cur][id]+=out[x]*in[y];
}
else
{
f[cur][id]+=out[x]*out[y];
}
}
}
}
}
Gauss(tot);
for(i=1;i<=n;++i)
{
printf("%.6f ",f[idx[i][i]][tot+1]);
}
return 0;
}

  

BZOJ 3270: 博物馆 概率与期望+高斯消元的更多相关文章

  1. BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...

  2. BZOJ 3143 游走(贪心+期望+高斯消元)

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

  3. l洛谷 P6030 [SDOI2012]走迷宫 概率与期望+高斯消元

    题目描述 传送门 分析 首先判掉 \(INF\) 的情况 第一种情况就是不能从 \(s\) 走到 \(t\) 第二种情况就是从 \(s\) 出发走到了出度为 \(0\) 的点,这样就再也走不到 \(t ...

  4. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 概率与期望+高斯消元

    这个还挺友好的,自己相对轻松能想出来~令 $f[i]$ 表示起点到点 $i$ 的期望次数,则 $ans[i]=f[i]\times \frac{p}{q}$ #include <cmath> ...

  5. BZOJ 3143 游走 | 数学期望 高斯消元

    啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下 ...

  6. 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元

    [题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...

  7. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  8. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  9. BZOJ 3270: 博物馆 [概率DP 高斯消元]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...

随机推荐

  1. Python开发之JavaScript

    JavaScript是一门编程语言,浏览器内置了JavaScript语言的解释器,所以在浏览器上按照JavaScript语言的规则编写相应代码之,浏览器可以解释并做出相应的处理. 一.如何编写 1.J ...

  2. 在react项目当中做导航守卫

    距离上一篇文章,似乎已经过去好久了. 确实是最近相对忙了一点,本身是用vue重构之前一个传统的项目,就自己一个人写.而且,在稍微闲暇之余,想着同时用react也重构一遍,也算是对react的学习吧!毕 ...

  3. Tomcat 的部署器

    要使用一个Web应用程序,必须要将表示该应用程序的Context实例部署到一个Host实例中,在Tomcat中,Context实例可以用WAR文件的形式来部署,也可以将整个WEB应用程序复制到Tomc ...

  4. imx8移植opencv(3.0以上版本)笔记

    基本步骤参考我同事的博客:https://blog.csdn.net/hunzhangzui9837/article/details/89846928 以下是在移植到imx8平台时的笔记和遇到的问题及 ...

  5. Bootstrap3基础教程 03 导航栏

    Bootstrap导航栏 创建一个默认的导航栏的步骤如下: 1.向 <nav> 标签添加 class .navbar..navbar-default. 2.向上面的元素添加 role=&q ...

  6. JS基础_for循环练习2

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. Oracle数据库中的变量

    Oracle数据库中的变量 来源:https://blog.csdn.net/wahaa591/article/details/46772769 1.define(即host变量) define va ...

  8. opencv 仿射变换 投射变换, 单应性矩阵

    仿射 estimateRigidTransform():计算多个二维点对或者图像之间的最优仿射变换矩阵 (2行x3列),H可以是部分自由度,比如各向一致的切变. getAffineTransform( ...

  9. 精心整理的一些 Python 学习资料

    今天花了些时间给大家精心整理一份 Python 学习资料.我觉得不错的资料我都整理进来了,如果你是学习python的,我觉得这一份资料对你应该有用. 1.知乎上超过 10k 的python相关回答 Y ...

  10. LeetCode 腾讯精选50题--最小栈

    题目很简单,实现一个最小栈,能够以线形的时间获取栈中元素的最小值 自己的思路如下: 利用数组,以及两个变量, last用于记录栈顶元素的位置,min用于记录栈中元素的最小值: 每一次push,都比较m ...