和游走挺像的,都是将概率转成期望出现的次数,然后拿高斯消元来解.

#include <bits/stdc++.h>
#define N 23
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
double in[N],out[N],f[N*N][N*N];
int G[N][N],deg[N],idx[N][N],tot;
void Gauss(int n)
{
int i,j,k,now;
for(i=1;i<=n;++i)
{
now=i;
for(j=i;j<=n;++j)
{
if(fabs(f[j][i])>fabs(f[now][i])) now=j;
}
if(now!=i)
{
for(j=1;j<=n;++j) swap(f[i][j],f[now][j]);
}
if(f[i][i])
{
for(j=i+1;j<=n+1;++j) f[i][j]/=f[i][i];
f[i][i]=1;
}
for(j=i+1;j<=n;++j)
{
double div=f[j][i];
for(k=i+1;k<=n+1;++k) f[j][k]-=div*f[i][k];
f[j][i]=0;
}
}
for(i=n;i>=1;--i)
{
for(j=i+1;j<=n;++j)
{
f[i][n+1]-=f[j][n+1]*f[i][j];
}
}
}
int main()
{
// setIO("input");
int n,i,j,m,A,B;
scanf("%d%d%d%d",&n,&m,&A,&B);
for(i=1;i<=m;++i)
{
int u,v;
scanf("%d%d",&u,&v),G[u][v]=G[v][u]=1,++deg[u],++deg[v];
}
for(i=1;i<=n;++i) scanf("%lf",&in[i]), out[i]=(1-in[i])/(1.0*deg[i]);
for(i=1;i<=n;++i) G[i][i]=1;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j) idx[i][j]=++tot;
}
f[idx[A][B]][tot+1]=-1;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
int cur=idx[i][j];
f[cur][cur]=-1;
for(int x=1;x<=n;++x)
{
for(int y=1;y<=n;++y)
{
if(x==y||!G[i][x]||!G[j][y]) continue;
int id=idx[x][y];
if(i==x&&j==y)
{
f[cur][id]+=in[i]*in[j];
}
else if(i==x&&j!=y)
{
f[cur][id]+=in[x]*out[y];
}
else if(i!=x&&j==y)
{
f[cur][id]+=out[x]*in[y];
}
else
{
f[cur][id]+=out[x]*out[y];
}
}
}
}
}
Gauss(tot);
for(i=1;i<=n;++i)
{
printf("%.6f ",f[idx[i][i]][tot+1]);
}
return 0;
}

  

BZOJ 3270: 博物馆 概率与期望+高斯消元的更多相关文章

  1. BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...

  2. BZOJ 3143 游走(贪心+期望+高斯消元)

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

  3. l洛谷 P6030 [SDOI2012]走迷宫 概率与期望+高斯消元

    题目描述 传送门 分析 首先判掉 \(INF\) 的情况 第一种情况就是不能从 \(s\) 走到 \(t\) 第二种情况就是从 \(s\) 出发走到了出度为 \(0\) 的点,这样就再也走不到 \(t ...

  4. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 概率与期望+高斯消元

    这个还挺友好的,自己相对轻松能想出来~令 $f[i]$ 表示起点到点 $i$ 的期望次数,则 $ans[i]=f[i]\times \frac{p}{q}$ #include <cmath> ...

  5. BZOJ 3143 游走 | 数学期望 高斯消元

    啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下 ...

  6. 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元

    [题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...

  7. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  8. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  9. BZOJ 3270: 博物馆 [概率DP 高斯消元]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...

随机推荐

  1. 初遇PHP(一)

    因为想给自己弄一个微信公众号,顺便提升一下自己,所以有了以下内容,本次学习的最终目标是能用php制作套微信公众号,然后转成Java.为什么要这么麻烦呢,其一是买的资料书是php的,其二是顺水推舟刚好可 ...

  2. django 路由层 伪静态网页 虚拟环境 视图层

    路由层 无名分组 有名分组 反向解析 路由分发 名称空间 伪静态网页 虚拟环境 视图层 JsonResponse FBV与CBV 文件上传 项目urls.py下面 from app01 import ...

  3. nnginx配置代理服务器

    因为有些服务有ip白名单的限制,部署多节点后ip很容易就不够用了,所以可以将这些服务部署到其中的一些机器上, 并且部署代理服务器,然后其余机器以代理的方式访问服务.开始是以tinyproxy作为代理服 ...

  4. 使用JWT的ASP.NET CORE令牌身份验证和授权(无Cookie)——第1部分

    原文:使用JWT的ASP.NET CORE令牌身份验证和授权(无Cookie)--第1部分 原文链接:https://www.codeproject.com/Articles/5160941/ASP- ...

  5. 修改NPM默认全局安装路径

    场景: 最近在新电脑上鼓捣完环境后,打算切换下源,结果使用全局安装的nrm时提示找不到命令,之前都是这么用现在怎么不行了呢? 排查过程: 于是各种折腾,发现- g安装的插件目录在C盘中的某个路径中,后 ...

  6. babel详解

    https://segmentfault.com/a/1190000019718925 https://babeljs.io/blog/2019/03/19/7.4.0#core-js-3-7646- ...

  7. video 轮播视频

    <video controls :src="product.videoUrl" :poster="resURL + defaultImg">< ...

  8. OLE使用

    ABAP操作EXCEL有多重方法,今天记录一下OLE,具体步骤如下: 1. 首先要上载EXCEL模板 事物代码:SMW0,具体步骤参考 本博客 http://www.cnblogs.com/caizj ...

  9. TypeError: this.setDynamic is not a function

    启动项目npm run serve 报错 Module build failed (from ./node_modules/_babel-loader@8.0.6@babel-loader/lib/i ...

  10. source命令用法:

    命令格式 source FileName 作用 在当前bash环境下读取并执行FileName中的命令. 注意 该命令通常用命令"."来替代.如:source .bash_rc 与 ...