图数据库-Neo4j-常用算法
<p>本次主要学习图数据库中常用到的一些算法,以及如何在<code>Neo4j</code>中调用,所以这一篇偏实战,每个算法的原理就简单的提一下。</p>
1. 图数据库中常用的算法
PathFinding & Search
一般用来发现Nodes之间的最短路径,常用算法有如下几种
- Dijkstra - 边不能为负值
- Folyd - 边可以为负值,有向图、无向图
- Bellman-Ford
- SPFA
Centrality
一般用来计算这个图中节点的中心性,用来发现比较重要的那些Nodes。这些中心性可以有很多种,比如
- Degree Centrality - 度中心性
- Weighted Degree Centrality - 加权度中心性
- Betweenness Centrality - 介数中心性
- Closeness Centrality - 紧度中心性
Community Detection
用于发现这个图中局部联系比较紧密的Nodes,类似我们学过的聚类算法。
- Strongly Connected Components
- Weakly Connected Components (Union Find)
- Label Propagation
- Lovain Modularity
- Triangle Count and Average Clustering Coefficient
2. 路径搜索算法
Shortest Path
1
2
3
4
5
6
7MATCH (start:Loc{name:"A"}), (end:Loc{name:"F"})
CALL algo.shortestPath.stream(start, end, "cost")
YIELD nodeId, cost
MATCH (other:Loc)
WHERE id(other) = nodeId
RETURN other.name AS name, costSingle Source Shortest Path
1
2
3
4
5
6MATCH (n:Loc {name:"A"})
CALL algo.shortestPath.deltaStepping.stream(n, "cost", 3.0
YIELD nodeId, distance
MATCH (destination) WHERE id(destination) = nodeId
RETURN destination.name AS destination, distanceAll Pairs Shortest Path
1
2
3
4
5
6
7
8
9
10
11CALL algo.allShortestPaths.stream("cost",{nodeQuery:"Loc",defaultValue:1.0})
YIELD sourceNodeId, targetNodeId, distance
WITH sourceNodeId, targetNodeId, distance
WHERE algo.isFinite(distance) = true
MATCH (source:Loc) WHERE id(source) = sourceNodeId
MATCH (target:Loc) WHERE id(target) = targetNodeId
WITH source, target, distance WHERE source <> target
RETURN source.name AS source, target.name AS target, distance
ORDER BY distance DESC
LIMIT 10Minimum Weight Spanning Tree
1
2
3
4
5MATCH (n:Place {id:"D"})
CALL algo.spanningTree.minimum("Place", "LINK", "cost", id(n),
{write:true, writeProperty:"MINST"})
YIELD loadMillis, computeMillis, writeMillis, effectiveNodeCount
RETURN loadMillis, computeMillis, writeMillis, effectiveNodeCount;CASE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15MERGE (a:Loc {name:"A"})
MERGE (b:Loc {name:"B"})
MERGE (c:Loc {name:"C"})
MERGE (d:Loc {name:"D"})
MERGE (e:Loc {name:"E"})
MERGE (f:Loc {name:"F"})
MERGE (a)-[:ROAD {cost:50}]->(b)
MERGE (a)-[:ROAD {cost:50}]->(c)
MERGE (a)-[:ROAD {cost:100}]->(d)
MERGE (b)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:80}]->(e)
MERGE (d)-[:ROAD {cost:30}]->(e)
MERGE (d)-[:ROAD {cost:80}]->(f)
MERGE (e)-[:ROAD {cost:40}]->(f);
3. 中心性算法
PageRank
1
2
3
4
5
6CALL algo.pageRank.stream("Page", "LINKS",
{iterations:20})
YIELD nodeId, score
MATCH (node) WHERE id(node) = nodeId
RETURN node.name AS page,score
ORDER BY score DESCDegree Centrality
Betweenness Centrality
1
2
3
4
5CALL algo.betweenness.stream("User", "MANAGES", {direction:"out"})
YIELD nodeId, centrality
MATCH (user:User) WHERE id(user) = nodeId
RETURN user.id AS user,centrality
ORDER BY centrality DESC;Closeness Centrality
1
2
3
4
5
6CALL algo.closeness.stream("Node", "LINK")
YIELD nodeId, centrality
MATCH (n:Node) WHERE id(n) = nodeId
RETURN n.id AS node, centrality
ORDER BY centrality DESC
LIMIT 20;CASE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22MERGE (home:Page {name:"Home"})
MERGE (about:Page {name:"About"})
MERGE (product:Page {name:"Product"})
MERGE (links:Page {name:"Links"})
MERGE (a:Page {name:"Site A"})
MERGE (b:Page {name:"Site B"})
MERGE (c:Page {name:"Site C"})
MERGE (d:Page {name:"Site D"})
MERGE (home)-[:LINKS]->(about)
MERGE (about)-[:LINKS]->(home)
MERGE (product)-[:LINKS]->(home)
MERGE (home)-[:LINKS]->(product)
MERGE (links)-[:LINKS]->(home)
MERGE (home)-[:LINKS]->(links)
MERGE (links)-[:LINKS]->(a)
MERGE (a)-[:LINKS]->(home)
MERGE (links)-[:LINKS]->(b)
MERGE (b)-[:LINKS]->(home)
MERGE (links)-[:LINKS]->(c)
MERGE (c)-[:LINKS]->(home)
MERGE (links)-[:LINKS]->(d)
MERGE (d)-[:LINKS]->(home)
4. 社区发现算法
Strongly Connected Components
1
2
3
4CALL algo.scc.stream("User","FOLLOWS")
YIELD nodeId, partition
MATCH (u:User) WHERE id(u) = nodeId
RETURN u.id AS name, partitionWeakly Connected Components (Union Find)
1
2
3
4CALL algo.unionFind.stream("User", "FRIEND", {})
YIELD nodeId,setId
MATCH (u:User) WHERE id(u) = nodeId
RETURN u.id AS user, setIdLabel Propagation
1
2CALL algo.labelPropagation.stream("User", "FOLLOWS",
{direction: "OUTGOING", iterations: 10})Lovain Modularity
1
2
3
4
5CALL algo.louvain.stream("User", "FRIEND", {})
YIELD nodeId, community
MATCH (user:User) WHERE id(user) = nodeId
RETURN user.id AS user, community
ORDER BY community;Triangle Count and Average Clustering Coefficient
1
2
3
4
5
6CALL algo.triangle.stream("Person","KNOWS")
YIELD nodeA,nodeB,nodeC
MATCH (a:Person) WHERE id(a) = nodeA
MATCH (b:Person) WHERE id(b) = nodeB
MATCH (c:Person) WHERE id(c) = nodeC
RETURN a.id AS nodeA, b.id AS nodeB, c.id AS node
5. References
- Neo4j in deep
- 官方文档:Comprehensive-Guide-to-Graph-Algorithms-in-Neo4j-ebook
原文地址:https://chenson.cc/2018/08/18/%E5%9B%BE%E6%95%B0%E6%8D%AE%E5%BA%93-Neo4j-%E5%B8%B8%E7%94%A8%E7%AE%97%E6%B3%95/
</div>
图数据库-Neo4j-常用算法的更多相关文章
- 图数据库neo4j添加算法包
1. 从https://github.com/neo4j-contrib/neo4j-graph-algorithms/releases下载相应版本jar包,放到 C:\Users\Administr ...
- Hello World 之Spring Boot 调用图数据库Neo4j
明日歌 [清]钱鹤滩 明日复明日,明日何其多! 我生待明日,万事成蹉跎 1. 图数据库Neo4j之爱的初体验 ----与君初相识,犹似故人归 在如今大数据(big data)横行的时代,传统的关系型数 ...
- 图数据库Neo4j简介
图数据库Neo4j简介 转自: 图形数据库Neo4J简介 - loveis715 - 博客园https://www.cnblogs.com/loveis715/p/5277051.html 最近我在用 ...
- 主流图数据库Neo4J、ArangoDB、OrientDB综合对比:架构分析
主流图数据库Neo4J.ArangoDB.OrientDB综合对比:架构分析 YOTOY 关注 0.4 2017.06.15 15:11* 字数 3733 阅读 16430评论 2喜欢 18 1: 本 ...
- 图数据库Neo4j
官网下载:https://neo4j.com/download/ 图数据库Neo4j入门:https://blog.csdn.net/gobitan/article/details/68929118 ...
- 开源软件:NoSql数据库 - 图数据库 Neo4j
转载自原文地址:http://www.cnblogs.com/loveis715/p/5277051.html 最近我在用图形数据库来完成对一个初创项目的支持.在使用过程中觉得这种图形数据库实际上挺有 ...
- (三)图数据库neo4j的安装配置
(一)neo4j安装 neo4j有社区版本和企业版,社区版本是免费的,企业版本是收费的.在linux上安装如下步骤: 1.将下载的neo4j-enterprise-3.4.0-unix.tar.gz包 ...
- 知识图谱之图数据库Neo4j
知识图谱中的知识是通过RDF结构来进行表示的,其基本单元是事实.每个事实是一个三元组(S, P, O),在实际系统中,按照存储方式的不同,知识图谱的存储可以分为基于表结构的存储和基于图结构的存储. 基 ...
- 图数据库neo4j和关系数据库的区别
相信您和我一样,在使用关系型数据库时常常会遇到一系列非常复杂的设计问题.例如一部电影中的各个演员常常有主角配角之分,还要有导演,特效等人员的参与.通常情况下这些人员常常都被抽象为Person类型,对应 ...
随机推荐
- js的 break 和 continue 计算问题
break和continue: 代码如下: var count=0; outermost: for(var i=0;i<10;i++){ for(var j=0;j&l ...
- Python 自学笔记(五)
1.布尔值 1-1.概念 定义计算机中的逻辑判断,只有两种结果,True和False. if,while后面的判断条件就是布尔值,只有条件为True的时候才执行. 1-2.数值比较 1-3.数值运算 ...
- IPC远程入侵
https://mp.weixin.qq.com/s/rQxvp2Sq8E4pBn-E9-COww IPC远程入侵 黑客网络技术 4月19日 一.什么是IPC 进程间通信(IPC,Inter-Proc ...
- 从零搭建配置Cuckoo Sandbox
1.安装依赖 $ sudo apt-get install git mongodb libffi-dev build-essential python-django python python-dev ...
- qt application logging
“AnalysisPtsDataTool201905.exe”(Win32): 已加载“F:\OpencvProject\ZY-Project\x64\Debug\AnalysisPtsDataToo ...
- 01-02 Flutter仿京东商城项目 功能分析、底部导航Tab切换以及路由配置、架构搭建:(Flutter仿京东商城项目 首页布局以及不同终端屏幕适配方案)
Flutter和Dart交流学习群:交流群:452892873 01Flutter仿京东商城项目 功能分析.底部导航Tab切换以及路由配置.架构搭建 02Flutter仿京东商城项目 首页布局以及不同 ...
- Python查询Mysql时返回字典结构的代码
Python查询Mysql时返回字典结构的代码 MySQLdb默认查询结果都是返回tuple,输出时候不是很方便,必须按照0,1这样读取,无意中在网上找到简单的修改方法,就是传递一个cursors.D ...
- 如何屏蔽掉烦人的www.google-analytics.com
有时候在开发的网站项目中会加载谷歌分析的js,并且加载的非常慢导致浏览器一直在转圈圈. 按下面的方法可屏蔽掉烦人的www.google-analytics.com 现在想只有屏蔽掉google-a ...
- python函数,定义,参数,返回值
python中可以将某些具备一定功能的代码写成一个函数,通过函数可以在一定程度上减少代码的冗余,节约书写代码的时间.因为有一些代码实现的功能我们可能会在很多地方用到. 1.函数的声明与定义 通过def ...
- 【并行计算与CUDA开发】英伟达硬件加速编解码
硬件加速 并行计算 OpenCL OpenCL API VS SDK 英伟达硬件编解码方案 基于 OpenCL 的 API 自己写一个编解码器 使用 SDK 中的编解码接口 使用编码器对于 OpenC ...