题目背景

这是一道模板题

题目描述

由小学知识可知,nn个点(x_i,y_i)(xi​,yi​)可以唯一地确定一个多项式

现在,给定nn个点,请你确定这个多项式,并将kk代入求值

求出的值对998244353998244353取模

输入格式

第一行两个正整数n,kn,k,含义如题

接下来nn行,每行两个正整数x_i,y_ixi​,yi​,含义如题

输出格式

一个整数表示答案

输入阳历:

3 100
1 4
2 9
3 16

输出样例:

10201

所周知,n + 1n+1个xx坐标不同的点可以确定唯一的最高为nn次的多项式。在算法竞赛中,我们常常会碰到一类题目,题目中直接或间接的给出了n+1n+1个点,让我们求由这些点构成的多项式在某一位置的取值

一个最显然的思路就是直接高斯消元求出多项式的系数,但是这样做复杂度巨大(n^3)(n3)且根据算法实现不同往往会存在精度问题

而拉格朗日插值法可以在n^2n2的复杂度内完美解决上述问题

假设该多项式为f(x)f(x), 第ii个点的坐标为(x_i, y_i)(xi​,yi​),我们需要找到该多项式在kk点的取值

根据拉格朗日插值法

f(k) = \sum_{i = 0}^{n} y_i \prod_{i \not = j} \frac{k - x[j]}{x[i] - x[j]}f(k)=i=0∑n​yi​i̸=j∏​x[i]−x[j]k−x[j]​

乍一看可能不是很好理解,我们来举个例子理解一下

假设给出的三个点为(1, 3)(2, 7)(3, 13)(1,3)(2,7)(3,13)

直接把$f(k)展开$

f(k) = 3 \frac{(k - 2)(k - 3)}{(1 - 2)(1 - 3)} + 7\frac{(k-1)(k-2)}{(2 - 1)(2-3)} + 13\frac{(k-1)(k-2)}{(3 -1)(3-2)}f(k)=3(1−2)(1−3)(k−2)(k−3)​+7(2−1)(2−3)(k−1)(k−2)​+13(3−1)(3−2)(k−1)(k−2)​

观察不难得到,如果我们把x_ixi​带入的话,除第ii项外的每一项的分子中都会有x_i - x_ixi​−xi​,这样其他的所有项就都被消去了

因此拉格朗日插值法的正确性是可以保证的

代码:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#define int long long
#define mod 998244353
const int N = 2050;
using namespace std;
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){s=s*10+ch-'0';ch=getchar();}
return s*w;
}
int power(int a,int b)
{
int res=1;
for(;b;b>>=1)
{
if(b&1)res=(res%mod*a%mod)%mod;
a=(a%mod*a%mod)%mod;
}
return res%mod;
}
int x[N],y[N],n,ans,v;
signed main()
{
n=read();
v=read();
for(int i=1;i<=n;i++)
{
x[i]=read();y[i]=read();
}
for(int i=1;i<=n;i++)
{
int k=1;
for(int j=1;j<=n;j++)if(i!=j)k=k*(x[i]+mod-x[j])%mod;
k=power(k,mod-2);
for(int j=1;j<=n;j++)
{
if(i!=j)k=k*(v+mod-x[j])%mod;
}
k=k*y[i]%mod;
ans=(ans+k)%mod;
}
printf("%d\n",ans);
return 0;
}

  

【luogu4781】拉格朗日插值的更多相关文章

  1. 【Luogu4781】【模板】拉格朗日插值

    [Luogu4781][模板]拉格朗日插值 题面 洛谷 题解 套个公式就好 #include<cstdio> #define ll long long #define MOD 998244 ...

  2. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  3. 常系数齐次线性递推 & 拉格朗日插值

    常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...

  4. 快速排序 and 拉格朗日插值查找

    private static void QuictSort(int[] zu, int left, int right) { if (left < right) { ; ; ]; while ( ...

  5. BZOJ3601 一个人的数论 莫比乌斯反演、高斯消元/拉格朗日插值

    传送门 题面图片真是大到离谱-- 题目要求的是 \(\begin{align*}\sum\limits_{i=1}^N i^d[gcd(i,n) == 1] &= \sum\limits_{i ...

  6. 【XSY1537】五颜六色的幻想乡 数学 生成树计数 拉格朗日插值

    题目大意 ​ 有一个\(n\)个点\(m\)条边的图,每条边有一种颜色\(c_i\in\{1,2,3\}\),求所有的包括\(i\)条颜色为\(1\)的边,\(j\)条颜色为\(2\)的边,\(k\) ...

  7. 【BZOJ2655】calc DP 数学 拉格朗日插值

    题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1, ...

  8. P4781 【模板】拉格朗日插值

    P4781 [模板]拉格朗日插值 证明 :https://wenku.baidu.com/view/0f88088a172ded630b1cb6b4.html http://www.ebola.pro ...

  9. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  10. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

随机推荐

  1. - 多次点击事件 MD

  2. C#中DateTime.Ticks

    DateTime.Ticks:表示0001 年 1 月 1 日午夜 12:00:00 以来所经历的 100 纳秒数,即Ticks的属性为100纳秒(1Ticks = 0.0001毫秒). Unix时间 ...

  3. spark application调度机制(spreadOutApps,oneExecutorPerWorker 算法)

    1.要想明白spark application调度机制,需要回答一下几个问题: 1.谁来调度? 2.为谁调度? 3.调度什么? 3.何时调度? 4.调度算法 前四个问题可以用如下一句话里来回答:每当集 ...

  4. 14 SQLAlchemy

    一. 介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL ...

  5. $.proxy的使用

    $.proxy()是jquery的一个方法.是一个改变this指向的方法. 在某些情况下,我们调用Javascript函数时候,this指针并不一定是我们所期望的那个.例如: //正常的this使用 ...

  6. 较新版FlowPortal BPM不能回车登录

    在BPM安装目录中找到路径:WEB\YZSoft\Login\2018\js\login.js 加回车登录代码如下 //回车登录 $('.yz-input.yzglyph.uid').bind('ke ...

  7. 17.SpringMVC核心技术-拦截器

    SpringMVC 中的 Interceptor 拦截器是非常重要和相当有用的,它的主要作用是拦截指定 的用户请求, 并进行相应的预处理与后处理.其拦截的时间点在“处理器映射器根据用户提 交的请求映射 ...

  8. SpEL表达式总结

    前言SpEL(Spring Expression Language),即Spring表达式语言,是比JSP的EL更强大的一种表达式语言.为什么要总结SpEL,因为它可以在运行时查询和操作数据,尤其是数 ...

  9. idea控制台乱码修改

    我的idea当前版本是2019.2.2 试了很多,只有这个有效果 工具类→HELP→Edit Custom VM OPtions中加 -Dfile.encoding=utf-8 然后重启IDEA 这个 ...

  10. 【异常】‘for’ loop initial declarations are only allowed in C99 mode

    1 Python版本导致的异常 /root/Python-3.5.7/Modules/_pickle.c: In function ‘PyMemoTable_Copy’: /root/Python-3 ...