我的天。。普及组这么$hard$。。。

然后好像没有人用我的垃圾做法,,,好像是$O(n)$,但十分的慢,并且极其暴力$qwq$

具体来说,就是直接$dfs$求出树高,然后想像出把原来的树补成满二叉树的形态

$like\space this:$

震不震惊$qwq$

然后对子树哈希,同时保存正向的哈希值$h1[u]$和反向的哈希值$h2[u]$(对称时用)。
但每次向上合并时要乘的是$Base^{sz+0/1}$,其中$sz=$子树所形成的完全二叉树的大小。

这样哈希值既可以表示点位置(不同的位置点在完全二叉树中的位置不同),又可以表示点的数值。

如果还不懂可以康康代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define R register int
using namespace std;
#define ull unsigned long long
#define ll long long
#define pause (for(R i=1;i<=10000000000;++i))
#define IN freopen("NOIPAK++.in","r",stdin)
#define OUT freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
}using Fread::g; using Fread::gs;
const int N=,B=;
int ch[N][];
#define ls ch[u][0]
#define rs ch[u][1]
int n,w[N],sz[N],d[N],ans,mxd;
ull h1[N],h2[N],p[N],tmp;
inline void dfs1(int u) { mxd=max(d[u],mxd);
if(~ls) d[ls]=d[u]+,dfs1(ls); if(~rs) d[rs]=d[u]+,dfs1(rs);
}
inline void dfs(int u) {sz[u]=;
if(~ls) dfs(ls),sz[u]+=sz[ls]; if(~rs) dfs(rs),sz[u]+=sz[rs];
if(~ls&&~rs&&sz[ls]==sz[rs]&&h1[ls]==h2[rs]&&h2[ls]==h1[rs]) ans=max(ans,sz[u]);
if(!~ls&&!~rs) h1[u]=h2[u]=w[u],ans=max(ans,); else if(~ls&&!~rs) h1[u]=h1[ls]*p[d[u]]+w[u]*(p[d[u]]-),h2[u]=h2[ls]+w[u]*(p[d[u]]-);
else if(!~ls&&~rs) h1[u]=w[u]*(p[d[u]]-)+h1[rs],h2[u]=w[u]*(p[d[u]]-)+h2[rs]*p[d[u]];
else h1[u]=h1[ls]*p[d[u]]+w[u]*(p[d[u]]-)+h1[rs],h2[u]=h2[ls]+w[u]*(p[d[u]]-)+h2[rs]*p[d[u]];
}
signed main() {
#ifdef JACK
IN;
#endif
n=g(); for(R i=;i<=n;++i) w[i]=g(); for(R u=;u<=n;++u) ls=g(),rs=g();
d[]=; dfs1();
for(R i=;i<=n;++i) d[i]=mxd-d[i]; p[]=; tmp=p[]=B; for(R i=;i<=mxd;++i) p[i+]=(tmp*=tmp);
dfs(); printf("%d\n",ans);
}

2019.07.08/09

Luogu P5018 对称二叉树 瞎搞树&哈希的更多相关文章

  1. 2021.08.09 P5018 对称二叉树(树形结构)

    2021.08.09 P5018 对称二叉树(树形结构) [P5018 NOIP2018 普及组] 对称二叉树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 求一棵子树,关 ...

  2. 洛谷P5018 对称二叉树——hash

    给一手链接 https://www.luogu.com.cn/problem/P5018 这道题其实就是用hash水过去的,我们维护两个hash 一个是先左子树后右子树的h1 一个是先右子树后左子树的 ...

  3. P5018 对称二叉树题解

    题目内容链接: 那么根据题意,上图不是对称二叉树,只有节点7的子树是: 通俗来说,对称二叉树就是已一个节点x为根的子树有穿过x点的对称轴并且对称轴两边的对称点的大小也必须相等,那么这棵树就是对称二叉树 ...

  4. 洛谷P5018 对称二叉树

    不多扯题目 直接题解= = 1.递归 由题目可以得知,子树既可以是根节点和叶节点组成,也可以是一个节点,题意中的对称二叉子树是必须由一个根节点一直到树的最底部所组成的树. 这样一来就简单了,我们很容易 ...

  5. P5018对称二叉树

    传送 题目说了那么多,到底什么是对称二叉树呢? 就是关于根节点左右镜面对称的二叉树辣. 当然,一棵对称二叉树的子树不一定是对称二叉树,就比如下面这个 它是对称二叉树,但是对于它的子树 这并不是对称二叉 ...

  6. NOIP2018普及T4暨洛谷P5018 对称二叉树题解

    题目链接:https://www.luogu.org/problemnew/show/P5018 花絮:这道题真的比历年的t4都简单的多呀,而且本蒟蒻做得出t4做不出t3呜呜呜... 这道题可以是一只 ...

  7. 洛谷 P5018 对称二叉树(搜索)

    嗯... 题目链接:https://www.luogu.org/problem/P5018 其实这道题直接搜索就可以搜满分: 首先递归把每个点作为根节点的儿子的数量初始化出来,然后看这个节点作为根节点 ...

  8. $P5018 对称二叉树$

    problem 一直忘记给这个题写题解了. 这题挺水的吧. 挺后悔当时没写出来. #ifdef Dubug #endif #include <bits/stdc++.h> using na ...

  9. 【洛谷P5018 对称二叉树】

    话说这图也太大了吧 这题十分的简单,我们可以用两个指针指向左右两个对称的东西,然后比较就行了 复杂度O(n*logn) #include<bits/stdc++.h> using name ...

随机推荐

  1. 什么是SSL证书服务?

    SSL证书服务(Alibaba Cloud SSL Certificates Service)由阿里云联合多家国内外数字证书管理和颁发的权威机构.在阿里云平台上直接提供的服务器数字证书.您可以在阿里云 ...

  2. Android Studio彻底删除Module

    在"Project"视图中选择需要删除的module名,此处删除"app",点击右键,选择"Open Module Setting",然后选 ...

  3. 怎样实现跨域AJAX请求发送Cookie

    第一步: 服务器必须在Response Header中设置: Access-Control-Allow-Credentials: true 第二步: 客户端发起请求时需要将 xhr.withCrede ...

  4. Python 字符串——巧取值和列表——巧取值 对比

    Python 字符串——巧取值和列表——巧取值 对比 1.字符串取值实例: samp_string = "Whatever you are, be a good one." for ...

  5. 客户端相关知识学习(十)之app给h5传递数据

    方法一: app可以把参数传到h5的链接里,用类似?xx=xx&xx=xx的形式拼接,js解析参数即可. 方法二: 情况一:app调用h5 原生app都可以对js的function进行触发,前 ...

  6. luogu4302字符串折叠题解--区间DP

    题目链接 https://www.luogu.org/problemnew/show/P4302 分析 很明显一道区间DP题,对于区间\([l,r]\)的字符串,如果它的字串是最优折叠的,那么它的最优 ...

  7. Advanced Installer 关于桌面的快捷方式。

    由于软件自动生成快捷方式,我发现桌面可以存在多个软件的快捷方式,因为快捷方式只要名字不同就可以存在多个,即使名字相同,只要备注不同,又可以存在多个. 那么由于软件自带生成快捷方式的功能,为了避免桌面出 ...

  8. $.proxy的使用

    $.proxy()是jquery的一个方法.是一个改变this指向的方法. 在某些情况下,我们调用Javascript函数时候,this指针并不一定是我们所期望的那个.例如: //正常的this使用 ...

  9. 连接Linux远程桌面的几个方法

    有下面五种方法: 一.通过xshell或putty直接调用程序窗口(通过ssh命令行连接). 二.通过xbrower连接Linux完整的桌面. 通过xshell直接调用程序窗口. rhel5的gdm的 ...

  10. Web Api 将DataTable装换成Excel,并通过文件流将其下载

    不废话,直接上代码 前端代码 <input type="button" class="layui-btn" value="Test-GetFil ...