我的天。。普及组这么$hard$。。。

然后好像没有人用我的垃圾做法,,,好像是$O(n)$,但十分的慢,并且极其暴力$qwq$

具体来说,就是直接$dfs$求出树高,然后想像出把原来的树补成满二叉树的形态

$like\space this:$

震不震惊$qwq$

然后对子树哈希,同时保存正向的哈希值$h1[u]$和反向的哈希值$h2[u]$(对称时用)。
但每次向上合并时要乘的是$Base^{sz+0/1}$,其中$sz=$子树所形成的完全二叉树的大小。

这样哈希值既可以表示点位置(不同的位置点在完全二叉树中的位置不同),又可以表示点的数值。

如果还不懂可以康康代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define R register int
using namespace std;
#define ull unsigned long long
#define ll long long
#define pause (for(R i=1;i<=10000000000;++i))
#define IN freopen("NOIPAK++.in","r",stdin)
#define OUT freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
}using Fread::g; using Fread::gs;
const int N=,B=;
int ch[N][];
#define ls ch[u][0]
#define rs ch[u][1]
int n,w[N],sz[N],d[N],ans,mxd;
ull h1[N],h2[N],p[N],tmp;
inline void dfs1(int u) { mxd=max(d[u],mxd);
if(~ls) d[ls]=d[u]+,dfs1(ls); if(~rs) d[rs]=d[u]+,dfs1(rs);
}
inline void dfs(int u) {sz[u]=;
if(~ls) dfs(ls),sz[u]+=sz[ls]; if(~rs) dfs(rs),sz[u]+=sz[rs];
if(~ls&&~rs&&sz[ls]==sz[rs]&&h1[ls]==h2[rs]&&h2[ls]==h1[rs]) ans=max(ans,sz[u]);
if(!~ls&&!~rs) h1[u]=h2[u]=w[u],ans=max(ans,); else if(~ls&&!~rs) h1[u]=h1[ls]*p[d[u]]+w[u]*(p[d[u]]-),h2[u]=h2[ls]+w[u]*(p[d[u]]-);
else if(!~ls&&~rs) h1[u]=w[u]*(p[d[u]]-)+h1[rs],h2[u]=w[u]*(p[d[u]]-)+h2[rs]*p[d[u]];
else h1[u]=h1[ls]*p[d[u]]+w[u]*(p[d[u]]-)+h1[rs],h2[u]=h2[ls]+w[u]*(p[d[u]]-)+h2[rs]*p[d[u]];
}
signed main() {
#ifdef JACK
IN;
#endif
n=g(); for(R i=;i<=n;++i) w[i]=g(); for(R u=;u<=n;++u) ls=g(),rs=g();
d[]=; dfs1();
for(R i=;i<=n;++i) d[i]=mxd-d[i]; p[]=; tmp=p[]=B; for(R i=;i<=mxd;++i) p[i+]=(tmp*=tmp);
dfs(); printf("%d\n",ans);
}

2019.07.08/09

Luogu P5018 对称二叉树 瞎搞树&哈希的更多相关文章

  1. 2021.08.09 P5018 对称二叉树(树形结构)

    2021.08.09 P5018 对称二叉树(树形结构) [P5018 NOIP2018 普及组] 对称二叉树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 求一棵子树,关 ...

  2. 洛谷P5018 对称二叉树——hash

    给一手链接 https://www.luogu.com.cn/problem/P5018 这道题其实就是用hash水过去的,我们维护两个hash 一个是先左子树后右子树的h1 一个是先右子树后左子树的 ...

  3. P5018 对称二叉树题解

    题目内容链接: 那么根据题意,上图不是对称二叉树,只有节点7的子树是: 通俗来说,对称二叉树就是已一个节点x为根的子树有穿过x点的对称轴并且对称轴两边的对称点的大小也必须相等,那么这棵树就是对称二叉树 ...

  4. 洛谷P5018 对称二叉树

    不多扯题目 直接题解= = 1.递归 由题目可以得知,子树既可以是根节点和叶节点组成,也可以是一个节点,题意中的对称二叉子树是必须由一个根节点一直到树的最底部所组成的树. 这样一来就简单了,我们很容易 ...

  5. P5018对称二叉树

    传送 题目说了那么多,到底什么是对称二叉树呢? 就是关于根节点左右镜面对称的二叉树辣. 当然,一棵对称二叉树的子树不一定是对称二叉树,就比如下面这个 它是对称二叉树,但是对于它的子树 这并不是对称二叉 ...

  6. NOIP2018普及T4暨洛谷P5018 对称二叉树题解

    题目链接:https://www.luogu.org/problemnew/show/P5018 花絮:这道题真的比历年的t4都简单的多呀,而且本蒟蒻做得出t4做不出t3呜呜呜... 这道题可以是一只 ...

  7. 洛谷 P5018 对称二叉树(搜索)

    嗯... 题目链接:https://www.luogu.org/problem/P5018 其实这道题直接搜索就可以搜满分: 首先递归把每个点作为根节点的儿子的数量初始化出来,然后看这个节点作为根节点 ...

  8. $P5018 对称二叉树$

    problem 一直忘记给这个题写题解了. 这题挺水的吧. 挺后悔当时没写出来. #ifdef Dubug #endif #include <bits/stdc++.h> using na ...

  9. 【洛谷P5018 对称二叉树】

    话说这图也太大了吧 这题十分的简单,我们可以用两个指针指向左右两个对称的东西,然后比较就行了 复杂度O(n*logn) #include<bits/stdc++.h> using name ...

随机推荐

  1. SQLite进阶-18.事务

    目录 SQLite事务 事务的属性 事务控制 BEGIN TRANSACTION命令 COMMIT命令 ROLLBACK命令 SQLite事务 事务(Transaction) 是一个对数据库执行工作单 ...

  2. Simple Library Management System HDU - 1497(图书管理系统)

    Problem Description After AC all the hardest problems in the world , the ACboy 8006 now has nothing ...

  3. N分成不同的数相乘使答案最大

    题意:http://acm.hdu.edu.cn/showproblem.php?pid=5976 首先队友想出了分的越多答案越多. 我们就:2,3,4,5,6...多出来的尽量往小了加就行了. #d ...

  4. Java通过Socket和动态代理实现简易RPC框架

    本文转自Dubbo作者梁飞大神的CSDN(https://javatar.iteye.com/blog/1123915),代码简洁,五脏俱全. 1.首先实现RpcFramework,实现服务的暴露与引 ...

  5. Spring在Thread中注入Bean无效的解决方式

    在Spring项目中,有时需要新开线程完成一些复杂任务,而线程中可能需要注入一些服务.而通过Spring注入来管理和使用服务是较为合理的方式.但是若直接在Thread子类中通过注解方式注入Bean是无 ...

  6. mvc 登陆界面+后台代码

    上代码 前端+js(懒得分文件了) @{ ViewBag.Title = "MVC权限系统架构学习-登录"; Layout = "/Views/Shared/_LoadJ ...

  7. 事件处理程序EventUtil

    /**********事件处理程序***********EventUtil.js*浏览器兼容,<高三>13章 P354*2014-12-8************************* ...

  8. 03 - Mongodb数据查询 | Mongodb

    1.基本查询 ①方法find():查询 db.集合名称.find({条件文档}) ②方法findOne():查询,只返回第一个 db.集合名称.findOne({条件文档}) ③方法pretty(): ...

  9. vue中使用svg字体图标

    1.在src/ 下面新建目录icons,里面新建文件夹svg,和文件index.js .svg用于存放从iconfont下载下来的svg格式的图标,index.js用于引入使用到svg文件和对应的组件 ...

  10. LEANGOO卡片

    转自:https://www.leangoo.com/leangoo_guide/leangoo_cards.html#toggle-id-10 Leangoo的卡片可以是需求.目标.任务.问题.缺陷 ...