Almost Acyclic Graph

CodeForces - 915D

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given a directed graph consisting of n vertices and m edges (each edge is directed, so it can be traversed in only one direction). You are allowed to remove at most one edge from it.

Can you make this graph acyclic by removing at most one edge from it? A directed graph is called acyclic iff it doesn't contain any cycle (a non-empty path that starts and ends in the same vertex).

Input

The first line contains two integers n and m (2 ≤ n ≤ 500, 1 ≤ m ≤ min(n(n - 1), 100000)) — the number of vertices and the number of edges, respectively.

Then m lines follow. Each line contains two integers u and v denoting a directed edge going from vertex u to vertex v (1 ≤ u, v ≤ n, u ≠ v). Each ordered pair (u, v) is listed at most once (there is at most one directed edge from u to v).

Output

If it is possible to make this graph acyclic by removing at most one edge, print YES. Otherwise, print NO.

Examples

input

Copy

3 41 22 33 23 1

output

Copy

YES

input

Copy

5 61 22 33 23 12 14 5

output

Copy

NO

Note

In the first example you can remove edge , and the graph becomes acyclic.

In the second example you have to remove at least two edges (for example, and ) in order to make the graph acyclic.

题意:

给你有一个n个点,m个边的有向图。

问是否可以只删除一个边,使整个图无环。

思路:

枚举每一个节点,将该节点的入度减去1,先不用管删除的是哪个边,删除一个终点是i节点的边的影响就是i的入度减去1.

然后通过拓扑排序在\(O(n+m)\) 的时间复杂度里可以判断出一个有向图是否有环。

所以整体的时间复杂度是\(O(n*(n+m))\)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int *p);
// const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ const int maxn = 510;
const int maxm = 3e5 + 10;
struct edge {
int to, from, nxt;
} edges[maxm]; int n, ind[maxn];
int in[maxn];
int head[maxn], cnt;
// 初始化
void init(int _n)
{
n = _n, cnt = -1;
for (int i = 1; i <= n; i++) { head[i] = -1, ind[i] = 0; }
}
// 加边
void addedge(int u, int v)
{
edges[++cnt].from = u;
edges[cnt].to = v;
edges[cnt].nxt = head[u];
head[u] = cnt;
ind[v]++;
} bool go()
{
queue<int> Q;
for (int i = 1; i <= n; i++) {
if (ind[i] == 0) { Q.push(i); }
}
cnt = 0;
while (!Q.empty()) {
int u = Q.front();
Q.pop();
cnt++;
for (int i = head[u]; i != -1; i = edges[i].nxt) {
int v = edges[i].to;
if (--ind[v] == 0) { Q.push(v); }
}
}
return cnt == n;
} int m;
int x, y; int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
du2(n, m);
init(n);
while (m--) {
du2(x, y);
addedge(x, y);
in[y]++;
}
int isok = 0;
repd(i, 1, n) {
if (in[y]) {
memcpy(ind, in, sizeof(in));
ind[i]--;
if (go()) {
isok = 1;
break;
}
}
}
if (isok) {
puts("YES");
} else {
puts("NO");
}
return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)的更多相关文章

  1. Almost Acyclic Graph CodeForces - 915D (思维,图论)

    大意: 给定无向图, 求是否能删除一条边后使图无环 直接枚举边判环复杂度过大, 实际上删除一条边可以看做将该边从一个顶点上拿开, 直接枚举顶点即可 复杂度$O(n(n+m))$ #include &l ...

  2. Legal or Not(拓扑排序判环)

    http://acm.hdu.edu.cn/showproblem.php?pid=3342 Legal or Not Time Limit: 2000/1000 MS (Java/Others)   ...

  3. POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39602   Accepted: 13 ...

  4. LightOJ1003---Drunk(拓扑排序判环)

    One of my friends is always drunk. So, sometimes I get a bit confused whether he is drunk or not. So ...

  5. HDU1811 拓扑排序判环+并查集

    HDU Rank of Tetris 题目:http://acm.hdu.edu.cn/showproblem.php?pid=1811 题意:中文问题就不解释题意了. 这道题其实就是一个拓扑排序判圈 ...

  6. Almost Acyclic Graph Codeforces - 915D

    以前做过的题都不会了.... 此题做法:优化的暴力 有一个显然的暴力:枚举每一条边试着删掉 注意到题目要求使得图无环,那么找出图上任意一个环,都应当要在其某一处断开(当然没有环是YES) 因此找出图中 ...

  7. [bzoj3012][luogu3065][USACO12DEC][第一!First!] (trie+拓扑排序判环)

    题目描述 Bessie has been playing with strings again. She found that by changing the order of the alphabe ...

  8. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  9. P1983 车站分级 思维+拓扑排序

    很久以前的一道暑假集训的题,忘了补. 感觉就是思维建图,加拓扑排序. 未停靠的火车站,必然比停靠的火车站等级低,就可以以此来建边,此处注意用vis来维护一下,一个起点和终点只建立一条边,因为不这样的话 ...

随机推荐

  1. VC 学习笔记 (持续更新)

    基于windows的程序和基于MS-DOS的程序之间的一个最根本的差别,就在于MS-DOS程序是通过操作系统的功能来获得用户的输入的,而windows程序则是通过操作系统 发送的消息来处理用户输入的. ...

  2. mongodb 连接后无法使用 发现已经有进程在运行

    mongod 命令执行发现已经有进程在运行mongod数据库--errno:48 Address already in use for socket: 0.0.0.0:27017 错误信息: list ...

  3. 巧用 Class Extension 隐藏属性

    一般来说,Extension用来给Class增加私有属性和方法,写在 Class 的.m文件.但是Extension不是必须要写在.m文件,你可以写在任何地方,只要在 @implementation  ...

  4. golang写入csv

    package main import ( "encoding/csv" "fmt" "os" ) func main() { file, ...

  5. kafka 名词解释及原理解析过程(三)

    为什么要了解这些名词的解释呢?因为在学一个新的知识或者领域的时候,我们需要知道它所定义的概念和名词意思,因为只有这样我们才能理解和掌握这个新的知识点,才能更加系统的掌握这个技术. 一.名词解释 1.b ...

  6. [转帖]linux下CPU、内存、IO、网络的压力测试,硬盘读写速度测试,Linux三个系统资源监控工具

    linux下CPU.内存.IO.网络的压力测试,硬盘读写速度测试,Linux三个系统资源监控工具 https://blog.51cto.com/hao360/1587165 linux_python关 ...

  7. 小菜鸟之oracle触发器

    1.触发器说明 触发器是一种在事件发生时隐式地自动执行的PL/SQL块,不能接受参数,不能被显式调用 2.触发器类型 根据触发器所创建的语句及所影响的对象的不同,将触发器分为以下3类 (1)DML触发 ...

  8. Java源码 -- LinkedList

    1.1.LinkedList概述 LinkedList是一种可以在任何位置进行高效地插入和移除操作的有序序列,它是基于双向链表实现的. LinkedList 是一个继承于AbstractSequent ...

  9. 2019牛客多校第七场E Find the median 权值线段树+离散化

    Find the median 题目链接: https://ac.nowcoder.com/acm/contest/887/E 题目描述 Let median of some array be the ...

  10. python pyyaml 使用教程(代码案例)

    test.py 内容 # 运行前,请先安装pyyaml模块 # pip3 install -i https://pypi.douban.com/simple/ pyyaml==5.1.1 import ...