AGC009E Eternal Average
神题orz
那个擦掉\(k\)个数然后写上一个平均值可以看成是\(k\)叉Huffman树的构造过程,每次选\(k\)个点合成一个新点,然后权值设为平均值.这些0和1都会在叶子的位置,同时每个叶子\(i\)的贡献为\(w_i\)(0或1)\(*{\frac{1}{k}}^{dep_i}\),也就是每过一层这个叶子代表的0或1就要除掉\(k\)加到答案里,这样子算,所有点的贡献之和正好是最终的平均值.还要满足\(\sum_{i=1}^{n}{\frac{1}{k}}^{dep_i}+\sum_{j=1}^{m}{\frac{1}{k}}^{dep_j}=1\),相当于如果全是1那么最后的值也是1.那么\(z\)能被表示成最终的值当且仅当\(z\)能表示成\(m\)个\({\frac{1}{k}}^{a_i}\)之和,以及\(1-z\)能表示成\(n\)个\({\frac{1}{k}}^{b_i}\)之和
如果把最终的值写成\(k\)进制小数,也就是\(0.c_1c_2...c_l\),那么\(\sum c=m\),当然这是没考虑进位,每次进位会导致一个\(c_i\ge k\)的\(c_i\)减\(k\),并且对应的\(c_{i-1}\)加\(1\),那么每次进位都会导致\(\sum c\)减去\(k-1\),所以条件就要改为\(\sum c \equiv m \mod k-1\).然后\(1-z\)的\(\sum c\)应该是\(l(k-1)+1-\sum c\),其中前半部分为整数1的\(k\)进制表示,所以在满足上述条件的情况下还满足\(l(k-1)+1-\sum c < n\)以及\(l(k-1)+1-\sum c \equiv n \mod k-1\)
然后dp求方案数.设\(f_{i,j}\)为考虑\(i\)位,\(\sum c\)为\(j\)的方案.注意我们要强制最后一位\(>0\),不然会和前面的方案算重,再加一维\(0/1\)表示末尾是\(0\)还是\(>0\)即可.转移可以前缀和优化
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=2000+10,mod=1e9+7;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,m,kk,f[2][N][2],pr[N],ans;
int main()
{
n=rd(),m=rd(),kk=rd();
int nw=1,la=0;
f[0][0][0]=1;
int lm=max(n,m)<<1;
for(int i=1;i<=lm;++i)
{
for(int j=0;j<=m;++j)
{
pr[j]=j?pr[j-1]:0;
pr[j]=(pr[j]+(f[la][j][0]+f[la][j][1])%mod)%mod;
f[la][j][0]=f[la][j][1]=0;
}
for(int j=0;j<=m;++j)
{
f[nw][j][0]=(pr[j]-(j?pr[j-1]:0)+mod)%mod;
if(j) f[nw][j][1]=(pr[j-1]-(j-(kk-1)-1<0?0:pr[j-(kk-1)-1])+mod)%mod;
if(j%(kk-1)==m%(kk-1)&&(i*(kk-1)+1-j)%(kk-1)==n%(kk-1)&&i*(kk-1)+1-j<=n)
ans=(ans+f[nw][j][1])%mod;
}
nw^=1,la^=1;
}
printf("%d\n",ans);
return 0;
}
AGC009E Eternal Average的更多相关文章
- AtCoder AGC009E Eternal Average (DP)
题目链接 https://atcoder.jp/contests/agc009/tasks/agc009_e 题解 又被劝退了... 第一步转化非常显然: 就等价于一开始有一个数\(1\), 有\(\ ...
- 【AGC009E】Eternal Average
[AGC009E]Eternal Average 题面 洛谷 题解 神仙题.jpg 我们把操作看成一棵\(k\)叉树,其中每个节点有权值,所有叶子节点(共\(n+m\)个)就是\(0\)或\(1\). ...
- AGC009:Eternal Average
传送门 好神啊 直接考虑一棵 \(n+m\) 个叶子的 \(k\) 叉树,根结点权值为 \(\sum_{i\in m}(\frac{1}{k})^{deep_i}\) 对于一个 \(deep\) 的序 ...
- AtCoder Grand Contest 009 E:Eternal Average
题目传送门:https://agc009.contest.atcoder.jp/tasks/agc009_e 题目翻译 纸上写了\(N\)个\(1\)和\(M\)个\(0\),你每次可以选择\(k\) ...
- AT2294 Eternal Average
题目 题目给我们的这个东西可以转化为一棵\(k\)叉树,有\(n+m\)个叶子节点,其中\(m\)个权值为\(1\),\(n\)个权值为\(0\),每个非叶子节点的权值为其儿子的平均值,现在问你根节点 ...
- AtCoder刷题记录
构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...
- ZJOI2017 Day2
私のZJOI Day2 2017-3-22 08:00:07 AtCoder试题选讲 SYC(Sun Yican) from Shaoxing No.1 High School 2017-3-22 0 ...
- AtCoder Grand Contest 009
AtCoder Grand Contest 009 A - Multiple Array 翻译 见洛谷 题解 从后往前考虑. #include<iostream> #include< ...
- AtCoder Grand Contest
一句话题解 QwQ主要是因为这篇文章写的有点长……有时候要找某一个题可能不是很好找,所以写了这个东西. 具体的题意.题解和代码可以再往下翻._(:з」∠)_ AGC 001 C:枚举中点/中边. D: ...
随机推荐
- IDEA问题java: -source 1.6 中不支持diamond、 lambda 表达式
文章目录 一.问题:连片的java: -source 1.6 中不支持 diamond 运算符.lambda 表达式 二.解决方法: 1.在微信群里问大佬,大佬在玩游戏,回复的比较慢 2.自己查Goo ...
- umount 报错was not found in /proc/mounts
前段时间在整理服务器时,看到nfs都是通过公网调用的,但是实际这几台服务器都是可以内网互通的,为了更稳定的使用,打算把这些挂载都更改为通过内网ip挂载,什么都设置好之后,操作第一台服务器没有问题,um ...
- linux常用20条命令
1.cd命令 这是一个非常基本,也是大家经常需要使用的命令,它用于切换当前目录,它的参数是要切换到的目录的路径,可以是绝对路径,也可以是相对路径.如: cd /root/Docements # 切换到 ...
- Springboot2.0实现URL拦截
1.创建一个登陆拦截器SecurityInterceptor,它继承HandlerInterceptorAdapter类 package com.cn.commodity.config; import ...
- spring mvc路径匹配原则
Ant path 匹配原则 在Spring MVC中经常要用到拦截器,在配置需要要拦截的路径时经常用到<mvc:mapping/>子标签,其有一个path属性,它就是用来指定需要拦截的路径 ...
- koa-session 持久化
一.使用mongoose链接数据库 'use strict'; const mongoose = require('mongoose'); const config = require('config ...
- Linux 如何上传/下载文件
注: 如果在操作中,提示没有权限请使用" su - "命令来切换当前账号至" root " 账号 一 . 使用 rz / sz 命令 1 . 登陆 Li ...
- 【HANA系列】SAP HANA SQL获取时间中的小时
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA SQL获取时间 ...
- 【HANA系列】【第七篇】SAP HANA XS使用Data Services查询CDS实体【一】
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列][第七篇]SAP HANA XS ...
- SqlSessionFactoryBuilder、SqlSessionFactory、SqlSession
可以说每个MyBatis都是以一个SqlSessionFactory实例为中心的.SqlSessionFactory实例可以通过SqlSessionFactoryBuilder来构建.一是可以通过XM ...