转载:https://blog.csdn.net/u014380165/article/details/77763037

https://www.twblogs.net/a/5b8d02472b717718833929d6/zh-cn

GitHub网址:https://github.com/Roll920/ThiNet https://github.com/Roll920/ThiNet_Code
项目资料网址:http://lamda.nju.edu.cn/luojh/project/ThiNet_ICCV17/ThiNet_ICCV17_CN.html

论文:ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression - ICCV2017
论文链接:https://arxiv.org/abs/1707.06342

论文:ThiNet: Pruning CNN Filters for a Thinner Net - TPAMI2018

框架的流程图如上Figure1,第一行是filter selection,选择的依据是:如果我们可以用第i+1层的输入channel的一个子集作为第i+1层的输入且近似得到第i+1层的输出,那么这个子集以外的channel就可以去掉了,因为第i+1层的一个输入channel对应第i层的一个filter(卷积核),因此去掉第i+1层的channel同时也就可以去掉第i层的filter。第二行是prune,将第一步的weak channel和对应的前面一层的filter去掉,得到更窄(thin)的网络,这也是ThiNet名称的由来。第三行是Fine-tuning,这里为了节约时间,当对每一层做prune后,都fine-tune1到2个epoch,然后等所有层都prune后,再fine-tune多个epoch。因此整体上就是上面这三步迭代应用到每一层上,依次对每一层做prune。

去掉冗余filter做prune的研究还有很多,关键在于选择方式,比如计算filter的绝对值和,认为如果一个filter的绝对值和比较小,说明该filter并不重要,这种算法暂且叫Weight sum;还有计算激活层输出的feature map的值的稀疏程度,如果feature map的值很稀疏,也就是大部分值是0,那么该feature map对应的filter也是冗余的,可以去掉,这种算法暂且叫APoZ(Average Percentage of Zeros)。这两种压缩算法在后面的实验中都会提到。

效果:

在ILSVRC-12数据集上,在VGG16上能够降低3.31×的FLOPs,16.63×的网络参数,而top-5准确度下降仅为0.52%。
对于ResNet-50这样紧凑的网络,ThiNet也能减少超过一半的的参数与FLOPs,而top-5仅降低1%。
ThiNet能将VGG16网络模型剪枝到只有5.05MB的大小,保留AlexNet级别的精度,却拥有更强的泛化性能。
不同选择算法的性能比较:

通道选择(数据驱动):

为了确定哪个通道可以安全移除,将收集用于重要性评估的训练集。如图所示,由y表示的元素从张量(ReLU之前)中进行随机采样。

通常,带偏置项b的卷积计算如下:

现在,如果我们定义:

便能将上面公式简化为:

这里 y^=y−b。 若我们能够找到一个通道子集S⊂{1,2,…,C},使得下式

总是成立,那么我们便能不再依赖于任何c∉S的通道。因此,这些通道(及其对应的filter)便能在不改变CNN网络模型精度的前提下被安全移除。当然,上面的公式不可能对于所有的x^与y^总保持成立。但我们可以手动提取一部分训练样本,来计算一个使得上式近似正确的子集S。

一种用于通道选择的贪心算法:

给定m(m由图片数量与位置数量决定)个训练样本{(x^i,y^i)},原通道选择问题可以转化为如下的优化问题:

这里,|S|为子集S的元素数量,r为预定义的压缩率(即保留多少个通道)。令T为被移除的通道集合(S∪T={1,2,…,C} 同时 S∩T=∅),我们便能最小化另一等价优化目标:

求解公式是一个NP难的问题,因此我们提出了一种快速的贪心算法进行求解。

最小化重构误差:

在决定保留哪几个滤波器之后,我们可以通过对每一个通道赋予权重来进一步地减小重构误差。

上式可以通过普通的最小二乘法来求解。

算法步骤:

1.filter选择。
使用layer(i + 1)的输入中的一个通道子集来逼近layer(i + 1)中的输出,则其他通道可以安全地从layer(i + 1)的输入中移除。layer(i + 1)的输入中的一个通道由第i层中的一个filter产生,因此可以同时修剪第i层中的相应filter。
2.修剪。
3.微调。
4.重复步骤1修剪下一层。

注意事项:

1)对于VGG-16网络,由于前面10层卷积占据了90%的计算量,而全连接层又占据了86%的参数,因此作者采用对前面10层卷积层进行prune,达到加速目的,另外将所有全连接层用一个global average pooling层代替。
2)对于ResNet网络,作者采用只对一个block的前两层卷积做prune,而不动最后一个卷积层,如下图。

模型压缩-ThiNet的更多相关文章

  1. 模型压缩,模型减枝,tf.nn.zero_fraction,统计0的比例,等。

    我们刚接到一个项目时,一开始并不是如何设计模型,而是去先跑一个现有的模型,看在项目需求在现有模型下面效果怎么样.当现有模型效果不错需要深入挖掘时,仅仅时跑现有模型是不够的,比如,如果你要在嵌入式里面去 ...

  2. CNN 模型压缩与加速算法综述

    本文由云+社区发表 导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一. 前言 自从AlexNet一举夺得 ...

  3. 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法

    原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...

  4. tensorflow 模型压缩

    模型压缩 为了将tensorflow深度学习模型部署到移动/嵌入式设备上,我们应该致力于减少模型的内存占用,缩短推断时间,减少耗电.有几种方法可以实现这些要求,如量化.权重剪枝或将大模型提炼成小模型. ...

  5. 【模型压缩】MetaPruning:基于元学习和AutoML的模型压缩新方法

    论文名称:MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning 论文地址:https://arxiv.org/ ...

  6. 模型压缩-Learning Efficient Convolutional Networks through Network Slimming

    Zhuang Liu主页:https://liuzhuang13.github.io/ Learning Efficient Convolutional Networks through Networ ...

  7. 模型压缩一半,精度几乎无损,TensorFlow推出半精度浮点量化工具包,还有在线Demo...

    近日,TensorFlow模型优化工具包又添一员大将,训练后的半精度浮点量化(float16 quantization)工具. 有了它,就能在几乎不损失模型精度的情况下,将模型压缩至一半大小,还能改善 ...

  8. 对抗性鲁棒性与模型压缩:ICCV2019论文解析

    对抗性鲁棒性与模型压缩:ICCV2019论文解析 Adversarial Robustness vs. Model Compression, or Both? 论文链接: http://openacc ...

  9. 模型压缩95%:Lite Transformer,MIT韩松等人

    模型压缩95%:Lite Transformer,MIT韩松等人 Lite Transformer with Long-Short Range Attention Zhanghao Wu, Zhiji ...

随机推荐

  1. win10+CPU+Python3.6下安装pytorch

    - 写在前面 最近,学习之余,想继续搞以前的深度学习.虽然电脑上已经安装配置好tensorflow,但是鉴于其学习难度较高,且我是一个忠实的Pythoner(爱所有Python化的东西),因此果断入坑 ...

  2. 图像处理---视频<->图片

    图像处理---视频<->图片 // 该程序实现视频和图片的相互转换. // Image_to_video()函数将一组图片合成AVI视频文件. // Video_to_image()函数将 ...

  3. 单元测试框架之unittest(二)

    一.摘要 本章笔者将详细介绍组织测试代码的相关内容,所用的测试例子会是冒泡排序,笔者在从业这么久之后回想很多面试都要问冒泡排序,虽然不知道为什么要问这个,但还是希望大家掌握,它与自动化测试关系不大属于 ...

  4. 大数据之路week05--day07(序列化、类加载器、反射、动态代理)

    遇到这个 Java Serializable 序列化这个接口,我们可能会有如下的问题 a,什么叫序列化和反序列化b,作用.为啥要实现这个 Serializable 接口,也就是为啥要序列化c,seri ...

  5. JAVA遇见HTML——JSP篇:JavaBeans

    Javabeans简介 Javabeans就是符合某种特定的规范的java类.使用Javabeans的好处是解决代码重复编写,减少代码冗余,功能区分明确,提高了代码的维护性. Javabean的设计原 ...

  6. C# 之 .net core -- MVC模式的显示、增、删、改

    上一篇介绍数据的创建连接,接下来就是基本的增删改 一.右键添加.控制器 二.选择这个带试图的 三.其他的不要动,点击添加 四.执行一下,改下url 试一下他的增删改. 其实自己写的话可以用form表单 ...

  7. pip报错:解决pkg_resources.DistributionNotFound: The 'pip==7.1.0' distribution was not found and is required by the application

    如果pip安装后提示依然没有pip命令,需在在添加环境变量 # vim /etc/profile 在文档最后,添加: export PATH="/usr/local/python2.7/bi ...

  8. Windows Dialog对话框

    一.MessageBox弹出框 MessageBox.Show(<字符串> Text, <字符串> Title, <整型> nType,MessageBoxIcon ...

  9. .NET界面开发新体验!DevExpress v19.2.4全新来袭

    DevExpress Universal Subscription(又名DevExpress宇宙版或DXperience Universal Suite)是全球使用广泛的.NET用户界面控件套包,De ...

  10. windows builder里面的可伸缩面板

    使用 org.eclipse.wb.core.controls.flyout.FlyoutControlComposite.FlyoutControlComposite类 构造方法中传入的prefer ...