题目链接

题意:

给出一个无向图,类似三角形的样子,然后给出边的权值,问找一条从第一个点到最后一个点的路径,要求每一条边只能走一次,并且权值和最大,点可以重复走。

思路:

首先观察这个图可以发现,所有的点的度数都是偶数。然后由每条边只能走一次知道,这个是和欧拉路相关的,是欧拉道路,不是欧拉回路,因为题目要求是从一个点到另一个点。但是图的所有点的度数都是偶数,那么想办法让图中的第一个点和最后一个点度数变为奇数,其他点的度数都是偶数。这个就比较巧妙,去掉从第一个点到最后一个点的一条无重复点的路径,除了起点和终点度数减1,其它点的度数都减2,目的就达到了。由于题目要求最后走的边的权值和最大,所以去掉的边的权值尽量小,那么从起点到终点求一个最短路即可。

求路径的方法是首先标记最短路上的边,然后从起点或终点开始dfs,走过的每条边标记(注意这是无向图,所以反向路径也要标记),当一个点再无边可走的时候,就把它放入路径中,这样可以保证求出的一定是一个欧拉道路。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N = 305;
const int inf = 0x3f3f3f3f; struct edge
{
int u,v,cost;
edge(int u,int v,int cost):u(u),v(v),cost(cost){}
edge(){}
}; int a[N][N],b[N][N],c[N][N];
int mp[N][N]; vector<edge> es;
vector<int> G[N*N];
vector<pii> anc; void adde(int u,int v,int cost)
{
es.push_back(edge(u,v,cost));
es.push_back(edge(v,u,cost));
int sz = es.size();
G[u].push_back(sz-2);
G[v].push_back(sz-1);
} ll dis[N*N];
int rev[N*N];
bool vis[N*N];
bool used[N*N*8];
pii rid[N*N]; int cnt; void spfa()
{
for (int i = 0;i <= cnt;i++) dis[i] = 1e18;
memset(vis,0,sizeof(vis));
memset(rev,0,sizeof(rev));
vis[1] = 1;
dis[1] = 0;
queue<int> q;
q.push(1);
while (!q.empty())
{
int u = q.front();
q.pop();
vis[u] = 0;
for (int i = 0;i < G[u].size();i++)
{
edge &e = es[G[u][i]];
int v = e.v;
if (dis[v] > dis[u] + e.cost)
{
dis[v] = dis[u] + e.cost;
rev[v] = G[u][i];
if (!vis[v])
{
vis[v] = 1;
q.push(v);
}
}
}
}
} void dfs(int u)
{
for (int i = 0;i < G[u].size();i++)
{
int id = G[u][i];
edge &e = es[id];
if (!used[id])
{
used[id] = used[id^1] = 1;
int v = e.v;
dfs(v);
}
}
anc.push_back(rid[u]);
} void init()
{
cnt = 0;
anc.clear();
es.clear();
for (int i = 0;i < N * N;i++) G[i].clear();
} int main()
{
int t;
scanf("%d",&t);
while (t--)
{
int n;
scanf("%d",&n);
init();
ll ans = 0;
for (int i = 1;i < n;i++)
{
for (int j = 1;j <= i;j++)
{
scanf("%d",&a[i][j]);
ans += a[i][j];
}
}
for (int i = 1;i < n;i++)
{
for (int j = 1;j <= i;j++)
{
scanf("%d",&b[i][j]);
ans += b[i][j];
}
}
for (int i = 1;i < n;i++)
{
for (int j = 1;j <= i;j++)
{
scanf("%d",&c[i][j]);
ans += c[i][j];
}
} for (int i = 1;i <= n;i++)
{
for (int j = 1;j <= i;j++)
{
mp[i][j] = ++cnt;
rid[cnt] = pii(i,j);
}
}
for (int i = 1;i < n;i++)
{
for (int j = 1;j <= i;j++)
{
int x = mp[i][j];
int y = mp[i+1][j];
adde(x,y,a[i][j]);
y = mp[i+1][j+1];
adde(x,y,b[i][j]);
x = mp[i+1][j];
y = mp[i+1][j+1];
adde(x,y,c[i][j]);
}
}
spfa();
ans -= dis[cnt];
memset(used,0,sizeof(used));
for (int i = cnt;i != 1;i = es[rev[i]].u)
{
used[rev[i]] = used[rev[i]^1] = 1;
}
dfs(cnt);
printf("%lld\n",ans);
printf("%d\n",(int)anc.size());
for (int i = 0;i < anc.size();i++)
{
printf("%d %d%c",anc[i].first,anc[i].second,i == anc.size() - 1 ? '\n' : ' ');
}
}
return 0;
}

zoj 4122 Triangle City 2019山东省赛J题的更多相关文章

  1. 山东省赛J题:Contest Print Server

    Description In ACM/ICPC on-site contests ,3 students share 1 computer,so you can print your source c ...

  2. 2013年山东省赛F题 Mountain Subsequences

    2013年山东省赛F题 Mountain Subsequences先说n^2做法,从第1个,(假设当前是第i个)到第i-1个位置上哪些比第i位的小,那也就意味着a[i]可以接在它后面,f1[i]表示从 ...

  3. hdu6578 2019湖南省赛D题Modulo Nine 经典dp

    目录 题目 解析 AC_Code @ 题目 第一题题意是一共有{0,1,2,3}四种数字供选择,问有多少个长度为n的序列满足所有m个条件,每个条件是说区间[L,R]内必须有恰好x个不同的数字. 第二题 ...

  4. HEX SDUT 3896 17年山东省赛D题

    HEX SDUT 3896 17年山东省赛D题这个题是从矩形的左下角走到右上角的方案数的变形题,看来我对以前做过的题理解还不是太深,或者是忘了.对于这种题目,直接分析它的性质就完事了.从(1,1)走到 ...

  5. luogu 1327 数列排序 & 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J题 循环节

    luogu 1327 数列排序 题意 给定一个数列\(\{an\}\),这个数列满足\(ai≠aj(i≠j)\),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? ...

  6. HDU 4800/zoj 3735 Josephina and RPG 2013 长沙现场赛J题

    第一年参加现场赛,比赛的时候就A了这一道,基本全场都A的签到题竟然A不出来,结果题目重现的时候1A,好受打击 ORZ..... 题目链接:http://acm.hdu.edu.cn/showprobl ...

  7. 模拟 2013年山东省赛 J Contest Print Server

    题目传送门 /* 题意:每支队伍需求打印机打印n张纸,当打印纸数累计到s时,打印机崩溃,打印出当前打印的纸数,s更新为(s*x+y)%mod 累计数清空为0,重新累计 模拟简单题:关键看懂题意 注意: ...

  8. The 10th Shandong Provincial Collegiate Programming Contest 2019山东省赛游记+解题报告

    比赛结束了几天...这篇博客其实比完就想写了...但是想等补完可做题顺便po上题解... 5.10晚的动车到了济南,没带外套有点凉.酒店还不错. 5.11早上去报道,济南大学好大啊...感觉走了一个世 ...

  9. [2019上海网络赛J题]Stone game

    题目链接 CSLnb! 题意是求出给定集合中有多少个合法子集,合法子集的定义为,子集和>=总和-子集和$\& \&$子集和-(子集的子集和)<=总和-子集和. 其实就是很简 ...

随机推荐

  1. Jmeter接口测试 1=> 接口测试介绍

    第一节 接口测试概念 什么是接口测试概念:接口测试是测试系统组件间接口的一种测试.接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点. 测试的重点是要检查数据的交换,传递和控制管理过 ...

  2. vue-wechat-title动态修改title

    在使用Vue制作项目的过程中,发现title没有变化 所以使用vue-wechat-title插件动态修改tilte 一.安装 npm vue-wechat-title --save 二.引入和使用 ...

  3. 动态加载js不执行解决办法

    这个问题的产生原因是:我们项目有一个主index文件,在主index文件中需要根据参数来判断是加载pc.html的内容还是加载mobile.html的内容,一开始是使用jquery来做的,没有问题,后 ...

  4. hdoj1011(树上分组背包)

    题目链接:https://vjudge.net/problem/HDU-1011 题意:给定一颗树,每个结点有两个属性,即花费V和价值w,并且选择子结点时必须选择父结点,求总花费不超过m的最大价值. ...

  5. Linux:shift 命令可以将参数依次向左移动一个位置

    在脚本中,命令行参数可以依据其在命令行中的位置来访问.第一个参数是 $1 ,第二个参数 是 $2 ,以此类推. 下面的语句可以显示出前3个命令行参数: echo $1 $2 $3 更为常见的处理方式是 ...

  6. Spring5的总体架构图

    Spring5的主体架构图 主要是四大部分:Web.Data Access/Integration.Core Container.中间层,具体见下图:

  7. Javascript - BOM 对象

    浏览器相关的对象.获取浏览器相关的信息,可以设置和修改浏览器属性. 0. web-app 版 TodoList 小程序 用以下内容可以自己手写一个 TodoList 小程序,再添加几行代码就可以用手机 ...

  8. HDU1285(拓扑排序裸题

    ..被多组测试坑了一波 #include<iostream> #include<vector> #include<queue> using namespace st ...

  9. PATB1040/A1093 有几个PAT

    题目描述 The string APPAPT contains two PAT's as substrings. The first one is formed by the 2nd, the 4th ...

  10. Leaf Sets CodeForces - 1042F (树,最小划分)

    大意: 给定树, 求叶子的最小划分, 使得每个划分内任意两个叶子距离不超过k. 任选一个非叶结点, 贪心合并. #include <iostream> #include <sstre ...