NumPy — NumPy

  • http://www.numpy.org/
  • NumPy is the fundamental package for scientific computing with Python.

NumPy - Wikipedia

NumPy - 维基百科,自由的百科全书

  • https://zh.wikipedia.org/wiki/NumPy
  • NumPyPython语言的一个扩充程序库。支持高阶大量的维度数组矩阵运算,此外也针对数组运算提供大量的数学函数。NumPy的前身Numeric最早是由Jim Hugunin与其它协作者共同开发,2005年,Travis Oliphant在Numeric中结合了另一个同性质的程序库Numarray的特色,并加入了其它扩展而开发了NumPy。NumPy为开放源代码并且由许多协作者共同维护开发。

收藏 | Numpy详细教程 - 机器学习算法与Python学习

  • https://mp.weixin.qq.com/s/MtwGkIhHvcaU-vmC89FfGA
  • NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。
  • Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的。 也开发了另一个包 Numarray ,它拥有一些额外的功能。 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包。 这个开源项目有很多贡献者。
  • Numpy基础
    • 创建数组
    • 打印数组
    • 基本运算
    • 通用函数(ufunc)
    • 索引,切片和迭代
    • 形状操作
    • 组合(stack)不同的数组
    • 将一个数组分割(split)成几个小数组
    • 视图(view)和浅复制
    • 深复制
    • 函数和方法(method)总览
  • 进阶
    • 广播法则(rule)
    • 花哨的索引和索引技巧
    • 通过数组索引
    • 通过布尔数组索引
    • ix_()函数
    • 线性代数
    • 矩阵类
    • 索引:比较矩阵和二维数组
  • 技巧和提示
    • 向量组合(stacking)
    • 直方图(histogram)

How to calculate distance between two points ?

  • python - How can the euclidean distance be calculated with numpy? - Stack Overflow

    • https://stackoverflow.com/questions/1401712/how-can-the-euclidean-distance-be-calculated-with-numpy
    • dist = numpy.linalg.norm(a-b)
  • numpy.linalg.norm — NumPy v1.9 Manual
    • https://docs.scipy.org/doc/numpy-1.9.3/reference/generated/numpy.linalg.norm.html

How to calculate angle from velocity ?

  • 2d - Calculating the angular direction from velocity - Game Development Stack Exchange

    • https://gamedev.stackexchange.com/questions/17340/calculating-the-angular-direction-from-velocity
    • angle = atan2 (vy,vx)
  • Radian - Wikipedia
    • https://en.wikipedia.org/wiki/Radian
    • The radian (SI symbol rad) is the SI unit for measuring angles, and is the standard unit of angular measure used in many areas of mathematics. The length of an arc of a unit circle is numerically equal to the measurement in radians of the angle that it subtends; one radian is just under 57.3 degrees (expansion at A072097). The unit was formerly an SI supplementary unit, but this category was abolished in 1995 and the radian is now considered an SI derived unit.
  • numpy.arctan2 — NumPy v1.15 Manual
    • https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan2.html#numpy.arctan2
    • Element-wise arc tangent of x1/x2 choosing the quadrant correctly.
    • The quadrant (i.e., branch) is chosen so that arctan2(x1, x2) is the signed angle in radians between the ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the point (x2x1). (Note the role reversal: the “y-coordinate” is the first function parameter, the “x-coordinate” is the second.) By IEEE convention, this function is defined for x2 = +/-0 and for either or both of x1 and x2 = +/-inf (see Notes for specific values).
    • This function is not defined for complex-valued arguments; for the so-called argument of complex values, use angle.
    • angle = np.arctan2(vy, vx) * 180 / np.pi

How to use conditional statement on array ?

  • (Python) How to use conditional statements on every element of array using [:] syntax? - Stack Overflow

    • https://stackoverflow.com/questions/45848612/python-how-to-use-conditional-statements-on-every-element-of-array-using-s
    • all(i == 0 for i in a)
    • a[a > 1] = 1
    • map(lambda x: 1 if x==0 else x, a)
    • a = np.where(a == 0, 1, a)
  • python - Function of Numpy Array with if-statement - Stack Overflow
    • https://stackoverflow.com/questions/8036878/function-of-numpy-array-with-if-statement
    • vfunc = vectorize(func)
  • numpy.array — NumPy v1.15 Manual
    • https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html?highlight=array#numpy.array
    • numpy.array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
  • numpy.where — NumPy v1.15 Manual
    • https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html?highlight=numpy%20where#numpy.where
    • Return elements, either from x or y, depending on condition.
    • If only condition is given, return condition.nonzero().
  • numpy.vectorize — NumPy v1.15 Manual
    • https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html
    • class numpy.vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None)
    • Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns an single or tuple of numpy array as output. The vectorized function evaluates pyfunc over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy.
    • The data type of the output of vectorized is determined by calling the function with the first element of the input. This can be avoided by specifying the otypes argument.

How to convert array into string ?

  • numpy.array_str — NumPy v1.9 Manual
  • http://memobio2015.u-strasbg.fr/conference/FICHIERS/Documentation/doc-numpy-html/reference/generated/numpy.array_str.html

How to compare ?

  • numpy.maximum — NumPy v1.15 Manual

    • https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.maximum.html
    • numpy.maximum(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'maximum'>
  • numpy.minimum — NumPy v1.15 Manual
    • https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.minimum.html
    • numpy.minimum(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'minimum'>
  • numpy.nanmax — NumPy v1.15 Manual
    • https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.nanmax.html
    • numpy.nanmax(a, axis=None, out=None, keepdims=<no value>)
  • numpy.nanmin — NumPy v1.15 Manual
    • https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.nanmin.html
    • numpy.nanmin(a, axis=None, out=None, keepdims=<no value>)
  • Constants — NumPy v1.15 Manual
    • https://docs.scipy.org/doc/numpy-1.15.1/reference/constants.html?highlight=numpy%20nan#numpy.inf

      • numpy.inf
    • https://docs.scipy.org/doc/numpy-1.15.1/reference/constants.html?highlight=numpy%20nan#numpy.nan
      • numpy.nan

学习笔记之NumPy的更多相关文章

  1. Python 学习笔记之 Numpy 库——文件操作

    1. 读写 txt 文件 a = list(range(0, 100)) a = np.array(a) # a.dtype = np.int64 np.savetxt("filename. ...

  2. Python 学习笔记之 Numpy 库——数组基础

    1. 初识数组 import numpy as np a = np.arange(15) a = a.reshape(3, 5) print(a.ndim, a.shape, a.dtype, a.s ...

  3. 吴裕雄--天生自然Numpy库学习笔记:NumPy Matplotlib

    Matplotlib 是 Python 的绘图库. 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案. 它也可以和图形工具包一起使用,如 PyQt 和 wxPython. W ...

  4. 吴裕雄--天生自然Numpy库学习笔记:NumPy IO

    Numpy 可以读写磁盘上的文本数据或二进制数据. NumPy 为 ndarray 对象引入了一个简单的文件格式:npy. npy 文件用于存储重建 ndarray 所需的数据.图形.dtype 和其 ...

  5. 吴裕雄--天生自然Numpy库学习笔记:NumPy 线性代数

    import numpy.matlib import numpy as np a = np.array([[1,2],[3,4]]) b = np.array([[11,12],[13,14]]) p ...

  6. 吴裕雄--天生自然Numpy库学习笔记:NumPy 矩阵库(Matrix)

    import numpy.matlib import numpy as np print (np.matlib.empty((2,2))) # 填充为随机数据 numpy.matlib.zeros() ...

  7. 吴裕雄--天生自然Numpy库学习笔记:NumPy 副本和视图

    副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置. 视图是数据的一个别称或引用,通过该别称或引用亦便可访问.操作原有数据,但原有数据不会产生拷贝.如果我们 ...

  8. 吴裕雄--天生自然Numpy库学习笔记:NumPy 字节交换

    大端模式:指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放 小端模式:指数据的高字节保 ...

  9. 吴裕雄--天生自然Numpy库学习笔记:NumPy 排序、条件刷选函数

    numpy.sort() 函数返回输入数组的排序副本.函数格式如下: numpy.sort(a, axis, kind, order) 参数说明: a: 要排序的数组 axis: 沿着它排序数组的轴, ...

随机推荐

  1. drone 1.0 新的构建徽章特性

    drone 1.0 昨天新发布的功能,支持了一个方便的查看构建状态的功能徽章 如下: 环境准备 docker-compose 文件 version: '3' services: drone-serve ...

  2. Power consumption comparison

    Here is my draft evaluation when old MCU replacement for power consumption, the comparsion betwween ...

  3. 两个简单的API限流实现方案

    1, Ngnix限流 Nginx在架构中起到请求转发与负载均衡器的作用.外部req首先到Nginx监听的80端口,然后Nginx将req交给到监听8080端口的APP服务器处理.处理结果再经由Ngin ...

  4. 艰苦的编译boost python (失败)

    1.下载 boost_1_67_0 2.在目录下执行 bootstrap 3.将python36添加到path环境变量 4.执行 b2 --with-python,将会声场如下dll 2018/04/ ...

  5. hive查询操作

  6. js正则表达式只能是数字、字母或下划线

    //只能是数字.字母或下划线 function isValid(str) { var reg = /^\w+$/g; return reg.test(str); }

  7. TP5一对一、一对多关联模型的使用

    文章表SQL CREATE TABLE `tp_article` ( `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键ID', `title` varc ...

  8. log4j.properties配置说明学习网址

    https://blog.csdn.net/wangzhaotongalex/article/details/51308802

  9. LOJ 2587 「APIO2018」铁人两项——圆方树

    题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...

  10. OpenCV几种访问cv::Mat数据的方法

    一般来说,如果是遍历数据的话用指针ptr比用at要快.特别是在debug版本下.因为debug中,OpenCV会对at中的坐标检查是否有溢出,这是非常耗时的. 代码如下 #include <op ...