学习笔记之NumPy
NumPy — NumPy
- http://www.numpy.org/
- NumPy is the fundamental package for scientific computing with Python.
NumPy - Wikipedia
- https://en.wikipedia.org/wiki/NumPy
- NumPy (pronounced /ˈnʌmpaɪ/ (NUM-py) or sometimes /ˈnʌmpi/[1][2] (NUM-pee)) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. The ancestor of NumPy, Numeric, was originally created by Jim Hugunin with contributions from several other developers. In 2005, Travis Oliphant created NumPy by incorporating features of the competing Numarray into Numeric, with extensive modifications. NumPy is open-source software and has many contributors.
NumPy - 维基百科,自由的百科全书
- https://zh.wikipedia.org/wiki/NumPy
- NumPy是Python语言的一个扩充程序库。支持高阶大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy的前身Numeric最早是由Jim Hugunin与其它协作者共同开发,2005年,Travis Oliphant在Numeric中结合了另一个同性质的程序库Numarray的特色,并加入了其它扩展而开发了NumPy。NumPy为开放源代码并且由许多协作者共同维护开发。
收藏 | Numpy详细教程 - 机器学习算法与Python学习
- https://mp.weixin.qq.com/s/MtwGkIhHvcaU-vmC89FfGA
- NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。
- Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的。 也开发了另一个包 Numarray ,它拥有一些额外的功能。 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包。 这个开源项目有很多贡献者。
- Numpy基础
- 创建数组
- 打印数组
- 基本运算
- 通用函数(ufunc)
- 索引,切片和迭代
- 形状操作
- 组合(stack)不同的数组
- 将一个数组分割(split)成几个小数组
- 视图(view)和浅复制
- 深复制
- 函数和方法(method)总览
- 进阶
- 广播法则(rule)
- 花哨的索引和索引技巧
- 通过数组索引
- 通过布尔数组索引
- ix_()函数
- 线性代数
- 矩阵类
- 索引:比较矩阵和二维数组
- 技巧和提示
- 向量组合(stacking)
- 直方图(histogram)
How to calculate distance between two points ?
- python - How can the euclidean distance be calculated with numpy? - Stack Overflow
- https://stackoverflow.com/questions/1401712/how-can-the-euclidean-distance-be-calculated-with-numpy
- dist = numpy.linalg.norm(a-b)
- numpy.linalg.norm — NumPy v1.9 Manual
- https://docs.scipy.org/doc/numpy-1.9.3/reference/generated/numpy.linalg.norm.html
How to calculate angle from velocity ?
- 2d - Calculating the angular direction from velocity - Game Development Stack Exchange
- https://gamedev.stackexchange.com/questions/17340/calculating-the-angular-direction-from-velocity
- angle = atan2 (vy,vx)
- Radian - Wikipedia
- https://en.wikipedia.org/wiki/Radian
- The radian (SI symbol rad) is the SI unit for measuring angles, and is the standard unit of angular measure used in many areas of mathematics. The length of an arc of a unit circle is numerically equal to the measurement in radians of the angle that it subtends; one radian is just under 57.3 degrees (expansion at
A072097). The unit was formerly an SI supplementary unit, but this category was abolished in 1995 and the radian is now considered an SI derived unit.
- numpy.arctan2 — NumPy v1.15 Manual
- https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan2.html#numpy.arctan2
- Element-wise arc tangent of
x1/x2
choosing the quadrant correctly. - The quadrant (i.e., branch) is chosen so that
arctan2(x1, x2)
is the signed angle in radians between the ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the point (x2, x1). (Note the role reversal: the “y-coordinate” is the first function parameter, the “x-coordinate” is the second.) By IEEE convention, this function is defined for x2 = +/-0 and for either or both of x1 and x2 = +/-inf (see Notes for specific values). - This function is not defined for complex-valued arguments; for the so-called argument of complex values, use
angle
. - angle = np.arctan2(vy, vx) * 180 / np.pi
How to use conditional statement on array ?
- (Python) How to use conditional statements on every element of array using [:] syntax? - Stack Overflow
- https://stackoverflow.com/questions/45848612/python-how-to-use-conditional-statements-on-every-element-of-array-using-s
- all(i == 0 for i in a)
- a[a > 1] = 1
- map(lambda x: 1 if x==0 else x, a)
- a = np.where(a == 0, 1, a)
- python - Function of Numpy Array with if-statement - Stack Overflow
- https://stackoverflow.com/questions/8036878/function-of-numpy-array-with-if-statement
- vfunc = vectorize(func)
- numpy.array — NumPy v1.15 Manual
- https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html?highlight=array#numpy.array
- numpy.array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
- numpy.where — NumPy v1.15 Manual
- https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html?highlight=numpy%20where#numpy.where
- Return elements, either from x or y, depending on condition.
- If only condition is given, return condition.nonzero().
- numpy.vectorize — NumPy v1.15 Manual
- https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html
- class numpy.vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None)
- Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns an single or tuple of numpy array as output. The vectorized function evaluates pyfunc over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy.
- The data type of the output of vectorized is determined by calling the function with the first element of the input. This can be avoided by specifying the otypes argument.
How to convert array into string ?
- numpy.array_str — NumPy v1.9 Manual
- http://memobio2015.u-strasbg.fr/conference/FICHIERS/Documentation/doc-numpy-html/reference/generated/numpy.array_str.html
How to compare ?
- numpy.maximum — NumPy v1.15 Manual
- https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.maximum.html
- numpy.maximum(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'maximum'>
- numpy.minimum — NumPy v1.15 Manual
- https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.minimum.html
- numpy.minimum(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'minimum'>
- numpy.nanmax — NumPy v1.15 Manual
- https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.nanmax.html
- numpy.nanmax(a, axis=None, out=None, keepdims=<no value>)
- numpy.nanmin — NumPy v1.15 Manual
- https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.nanmin.html
- numpy.nanmin(a, axis=None, out=None, keepdims=<no value>)
- Constants — NumPy v1.15 Manual
- https://docs.scipy.org/doc/numpy-1.15.1/reference/constants.html?highlight=numpy%20nan#numpy.inf
- numpy.inf
- https://docs.scipy.org/doc/numpy-1.15.1/reference/constants.html?highlight=numpy%20nan#numpy.nan
- numpy.nan
- https://docs.scipy.org/doc/numpy-1.15.1/reference/constants.html?highlight=numpy%20nan#numpy.inf
学习笔记之NumPy的更多相关文章
- Python 学习笔记之 Numpy 库——文件操作
1. 读写 txt 文件 a = list(range(0, 100)) a = np.array(a) # a.dtype = np.int64 np.savetxt("filename. ...
- Python 学习笔记之 Numpy 库——数组基础
1. 初识数组 import numpy as np a = np.arange(15) a = a.reshape(3, 5) print(a.ndim, a.shape, a.dtype, a.s ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy Matplotlib
Matplotlib 是 Python 的绘图库. 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案. 它也可以和图形工具包一起使用,如 PyQt 和 wxPython. W ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy IO
Numpy 可以读写磁盘上的文本数据或二进制数据. NumPy 为 ndarray 对象引入了一个简单的文件格式:npy. npy 文件用于存储重建 ndarray 所需的数据.图形.dtype 和其 ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 线性代数
import numpy.matlib import numpy as np a = np.array([[1,2],[3,4]]) b = np.array([[11,12],[13,14]]) p ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 矩阵库(Matrix)
import numpy.matlib import numpy as np print (np.matlib.empty((2,2))) # 填充为随机数据 numpy.matlib.zeros() ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 副本和视图
副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置. 视图是数据的一个别称或引用,通过该别称或引用亦便可访问.操作原有数据,但原有数据不会产生拷贝.如果我们 ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 字节交换
大端模式:指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放 小端模式:指数据的高字节保 ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 排序、条件刷选函数
numpy.sort() 函数返回输入数组的排序副本.函数格式如下: numpy.sort(a, axis, kind, order) 参数说明: a: 要排序的数组 axis: 沿着它排序数组的轴, ...
随机推荐
- C++ Tips
1. 虚函数不能是内联的 因为“内联”是指“在编译期间用被调用的函数体本身来代替函数调用的指令,”但是虚函数的“虚”是指“直到运行时才能知道要调用的是哪一个函数.”如果编译器在某个函数的调用点不知道具 ...
- 如何查看你的VPS是什么虚拟化架构?
使用virt-what即可了 CentOS安装 virt-what yum install virt-what Debian/ubuntu 安装 virt-what apt-get install v ...
- AangularJS相关术语
1. 数据模型对象(model object)是指$scope对象.$scope对象又是一个简单的JavaScript对象,其中的属性可以被视图访问,也可以同控制器进行交互. 2. $scope ...
- ElasticSearch安装部署,基本配置(Ubuntu14.04)
ElasticSearch部署文档(Ubuntu 14.04) 安装java sudo add-apt-repository ppa:webupd8team/java sudo apt-get upd ...
- IBM WebSphere MQ介绍安装以及配置服务详解
首先介绍一下MQ MQ消息队列的简称是一种应用程序对应用程序的通信方法.说白了也就是通过队列的方式来对应用程序进行数据通信.而无需专用链接来链接它们. MQ的通讯方式 1.数据报的方式 Datagra ...
- js里面的全局属性 全局对象 全局函数
1)全局属性 Infinity typeof Infinity //number NaN typeof NaN //number undefined ...
- socket服务器编程的一般思路
socket bind 创建一个listern线程 为每一个连接的client创建一个线程
- 论 业务系统 架构 的 简化 (一) 不需要 MQ
MQ , 就是 消息队列(Message Queue), 不知从什么时候起, MQ 被用来 搭建 分布式 业务系统 架构, 一个重要作用 就是用来 “削峰” . 我们 这里 就来 讨论 如何 设 ...
- [转]一致性hash算法 - consistent hashing
consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在 cache 系统中应用越来越广泛: 1 ...
- js将网址转为二维码并下载图片
将一个网址转为二维码, 下面可以添加文字, 还提供下载功能 利用的是 GitHub上面的qrcode.js 和canvas <!DOCTYPE html> <html> < ...