tf.nn.rnn_cell.MultiRNNCell
Class tf.contrib.rnn.MultiRNNCell 新版
Class tf.nn.rnn_cell.MultiRNNCell
构建多隐层神经网络
__init__(cells, state_is_tuple=True)
cells:rnn cell 的list
state_is_tuple:true,状态Ct和ht就是分开记录,放在一个tuple中,接受和返回的states是n-tuples,其中n=len(cells),False,states是concatenated沿着列轴.后者即将弃用。
BasicLSTMCell 单隐层

BasicLSTMCell 多隐层

代码示例
# encoding:utf-8
import tensorflow as tf batch_size=10
depth=128 inputs=tf.Variable(tf.random_normal([batch_size,depth])) previous_state0=(tf.random_normal([batch_size,100]),tf.random_normal([batch_size,100]))
previous_state1=(tf.random_normal([batch_size,200]),tf.random_normal([batch_size,200]))
previous_state2=(tf.random_normal([batch_size,300]),tf.random_normal([batch_size,300])) num_units=[100,200,300]
print(inputs) cells=[tf.nn.rnn_cell.BasicLSTMCell(num_unit) for num_unit in num_units]
mul_cells=tf.nn.rnn_cell.MultiRNNCell(cells) outputs,states=mul_cells(inputs,(previous_state0,previous_state1,previous_state2)) print(outputs.shape) #(10, 300)
print(states[0]) #第一层LSTM
print(states[1]) #第二层LSTM
print(states[2]) ##第三层LSTM
print(states[0].h.shape) #第一层LSTM的h状态,(10, 100)
print(states[0].c.shape) #第一层LSTM的c状态,(10, 100)
print(states[1].h.shape) #第二层LSTM的h状态,(10, 200)
输出
(10, 300)
LSTMStateTuple(c=<tf.Tensor 'multi_rnn_cell/cell_0/basic_lstm_cell/Add_1:0' shape=(10, 100) dtype=float32>, h=<tf.Tensor 'multi_rnn_cell/cell_0/basic_lstm_cell/Mul_2:0' shape=(10, 100) dtype=float32>)
LSTMStateTuple(c=<tf.Tensor 'multi_rnn_cell/cell_1/basic_lstm_cell/Add_1:0' shape=(10, 200) dtype=float32>, h=<tf.Tensor 'multi_rnn_cell/cell_1/basic_lstm_cell/Mul_2:0' shape=(10, 200) dtype=float32>)
LSTMStateTuple(c=<tf.Tensor 'multi_rnn_cell/cell_2/basic_lstm_cell/Add_1:0' shape=(10, 300) dtype=float32>, h=<tf.Tensor 'multi_rnn_cell/cell_2/basic_lstm_cell/Mul_2:0' shape=(10, 300) dtype=float32>)
(10, 100)
(10, 100)
(10, 200)
tf.nn.rnn_cell.MultiRNNCell的更多相关文章
- tf.nn.dynamic_rnn
tf.nn.dynamic_rnn(cell,inputs,sequence_length=None, initial_state=None,dtype=None, parallel_iteratio ...
- tensorflow笔记6:tf.nn.dynamic_rnn 和 bidirectional_dynamic_rnn:的输出,output和state,以及如何作为decoder 的输入
一.tf.nn.dynamic_rnn :函数使用和输出 官网:https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn 使用说明: A ...
- 深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)
问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse) # 构建 ...
- tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别
tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别 https://blog.csdn.net/u014365862/article/details/78238 ...
- TF-卷积函数 tf.nn.conv2d 介绍
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...
- tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例
tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...
- tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码
这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...
- 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别
1. tf.add(x, y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...
- tf.nn.conv2d。卷积函数
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
随机推荐
- LeetCode--007--整数反转(java)
给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: 120 输出 ...
- (未完成👃)You Don't Know JS: Scope & Closures (第5章: Scope & Closures)
Chapter 5: Scope Closure 我们到达这里时,已经对作用域如何工作有了非常健康稳固的理解. 下面,我们转移注意力到一个及其重要,但长期难以理解,几乎是神话中的部分语言:Closur ...
- 7 selenium 模块
selenium 模块 一.简介 1.Python的一个第三方库,对外提供的接口可以操作浏览器,然后让浏览器完成自动化的操作. 2.自动化测试工具,而爬虫中使用它主要是为了解决requests无法直接 ...
- pytorch构建自己设计的层
下面是如何自己构建一个层,分为包含自动反向求导和手动反向求导两种方式,后面会分别构建网络,对比一下结果对不对. -------------------------------------------- ...
- Integer To Roman leetcode java
问题描述: Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range fr ...
- 『TensorFlow × MXNet』SSD项目复现经验
『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍 『TensorFlow』SSD源码学习_其二:基于VGG的SSD网络前向架构 『TensorFlow』SSD源码学习_其三:锚框生 ...
- python模块安装报错大全
报错 环境 解决 手动安装pip install mysqlclient 报错: _mysql.c(29) : fatal error C1083: Cannot open include file: ...
- bat安装python的msi包
#把python-2.7.3.amd64.msi和这个脚本放在同一个目录下 @ECHO OFF ::定于初始变量SET python_home=C:\Python27SET python_exe= ...
- windows 系统使用 git 和码云管理代码(本地已有项目)
1. 为本地项目创建本地仓 找到项目所在的根目录(目录下有解决方案那个),右击目录,点击右键菜单中的“Git Bash Here”(前提是你的电脑已经装了Git,我用的是TortoiseGit) 然后 ...
- python中RabbitMQ的使用(路由键模糊匹配)
路由键模糊匹配 使用正则表达式进行匹配.其中“#”表示所有.全部的意思:“*”只匹配到一个词. 匹配规则: 路由键:routings = [ 'happy.work', 'happy.life' , ...