hdu5125 他说的是n个人每个人都有两个气球a,b,气球各自都有相应的体积,现在让他们按照序号排列好来,对他们的a气球体积值计算最长上升子序列,对于这整个排列来说有m次机会让你将a气球替换成b气球(允许不使用完),问最后的最长上升子序列 的长度是多少,哈哈,当然用dp的思想我们很容易就能知道状态的转移 dp[1000][1000][2],但是苦于状态转移的复杂度太大了达到了 n*n*m肯定受不了,那好我们可以列出这个方程的转移方法
(0表示a气球1为b气球)
dp[i][j][0]=max(  dp[k][j][0]     +1(a[k]<a[i]) , dp[k][j][j]     +1(b[k]<a[i]) )0<=k<i 
dp[i][j][1]=max(  dp[k][j-1][0] +1(a[k]<b[i]) , dp[k][j-1][1] +1(b[k]<b[i])  )0<=k<i
想想优化方法 看来还是需要有换个想法的能力 啊 !
通过建立m棵树状数组 第j棵树 表示 使用了 j 个 能 量 的 时 候 每个位置所能到达的最高点,说清楚一点就是讲这n*2个气球体积进行离散,得到了树状数组的每个节点从第0个人枚举到第n-1个,比如到达了第i个人 那么 到达他时使用了j个机会的 方案是不是 就是去找比ai(假设离散后在k这个位置)小的那些气球使用j个机会时达到的最长序列加1呢,好那么现就使用树状数组去计算出前k-1 项的 最大值S,然后将S这个值插入当前这个树状数组中 ,那么现在 我们考虑使用b气球可以去j-1 这棵树上去找 然后得到的值加1 插入第j棵树上,哇这样很完美啊! 瞬间将复杂度减了2个0,这样一直不断地做下去直到结束.
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
using namespace std;
const int maxn=;
int a[maxn],b[maxn];
int c[maxn][maxn*],h[maxn*],L;
int lowbit(int x){
return x&(-x);
}
void add(int loc, int floor,int v){
while(loc<=L){
c[floor][loc]=max(v,c[floor][loc]);
loc+=lowbit(loc);
}
}
int sum(int loc, int floor){
int ans=;
while(loc>){
ans=max(c[floor][loc],ans);
loc-=lowbit(loc);
}
return ans;
} int main()
{
int cas;
scanf("%d",&cas);
while(cas--){
int n,m;
scanf("%d%d",&n,&m);
L=;
for(int i=; i<n; ++i){
scanf("%d%d",&a[i],&b[i]);
h[L++]=a[i]; h[L++]=b[i];
}
memset(c,,sizeof(c));
sort(h,h+L);
L=unique(h,h+L)-h;
int ans=;
for(int i=; i<n; ++i){
int loca = lower_bound(h,h+L,a[i])-h+;
int locb = lower_bound(h,h+L,b[i])-h+;
int val;
for(int j=min(i+,m);j>; j--){
val = sum(loca-,j);
ans=max(ans,val+);
add(loca,j,val+);
val = sum(locb-,j-);
ans=max(ans,val+);
add(locb,j,val+);
}
val = sum(loca-,);
ans=max(ans,val+);
add(loca,,val+);
}
printf("%d\n",ans);
}
return ;
}

hdu5125 树状数组+dp的更多相关文章

  1. codeforces 597C (树状数组+DP)

    题目链接:http://codeforces.com/contest/597/problem/C 思路:dp[i][j]表示长度为i,以j结尾的上升子序列,则有dp[i][j]= ∑dp[i-1][k ...

  2. hdu 4622 Reincarnation trie树+树状数组/dp

    题意:给你一个字符串和m个询问,问你l,r这个区间内出现过多少字串. 连接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 网上也有用后缀数组搞得. 思路 ...

  3. Codeforces 597C. Subsequences (树状数组+dp)

    题目链接:http://codeforces.com/contest/597/problem/C 给你n和数(1~n各不同),问你长为k+1的上升自序列有多少. dp[i][j] 表示末尾数字为i 长 ...

  4. HDU2227Find the nondecreasing subsequences(树状数组+DP)

    题目大意就是说帮你给出一个序列a,让你求出它的非递减序列有多少个. 设dp[i]表示以a[i]结尾的非递减子序列的个数,由题意我们可以写出状态转移方程: dp[i] = sum{dp[j] | 1&l ...

  5. CodeForces - 314C Sereja and Subsequences (树状数组+dp)

    Sereja has a sequence that consists of n positive integers, a1, a2, ..., an. First Sereja took a pie ...

  6. HDU 6348 序列计数 (树状数组 + DP)

    序列计数 Time Limit: 4500/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  7. [Codeforces261D]Maxim and Increasing Subsequence——树状数组+DP

    题目链接: Codeforces261D 题目大意:$k$次询问,每次给出一个长度为$n$的序列$b$及$b$中的最大值$maxb$,构造出序列$a$为$t$个序列$b$连接而成,求$a$的最长上升子 ...

  8. 【XSY2727】Remove Dilworth定理 堆 树状数组 DP

    题目描述 一个二维平面上有\(n\)个梯形,满足: 所有梯形的下底边在直线\(y=0\)上. 所有梯形的上底边在直线\(y=1\)上. 没有两个点的坐标相同. 你一次可以选择任意多个梯形,必须满足这些 ...

  9. hdu5489 树状数组+dp

    2015-10-06 21:49:54 这题说的是个给了一个数组,然后删除任意起点的一个连续的L个数,然后求最长递增子序列<是递增,不是非递减>,用一个树状数组维护一下就ok了 #incl ...

随机推荐

  1. python中dict的fromkeys用法

    fromkeys是创造一个新的字典.就是事先造好一个空字典和一个列表,fromkeys会接收两个参数,第一个参数为从外部传入的可迭代对象,会将循环取出元素作为字典的key值,另外一个参数是字典的val ...

  2. json 脚本入库的几种方法

    json 脚本入库的几种方法,见代码: #-*- encoding: utf-8 -*- #第一种mongodb入库 # from pymongo import * # import json # c ...

  3. Linux内核如何装载和启动一个可执行程序(转)

    原文:http://www.cnblogs.com/petede/p/5351696.html 实验七:Linux内核如何装载和启动一个可执行程序 姓名:李冬辉 学号:20133201 注: 原创作品 ...

  4. SQL查询优化:详解SQL Server非聚集索引(转载)

    本文是转载,原文地址 http://tech.it168.com/a2011/1228/1295/000001295176.shtml 在SQL SERVER中,非聚集索引其实可以看作是一个含有聚集索 ...

  5. es修改指定的field(partial update)

    PUT /index/type/id 创建文档&替换文档,就是一样的语法一般对应到应用程序中,每次的执行流程基本是这样的:1.应用程序发起一个get请求,获取到document,展示到前台界面 ...

  6. es内部的多线程异步并发控制

    version元数据(1)第一次创建一个document的时候,它的_version版本号是1:以后,每次对这个document执行修改或者删除操作,都会对这个_version版本号自动加1(2)在删 ...

  7. UNDERSTANDING ITWEEN CALLBACKS

    One of the most frequent problems I see people have with iTween is with callbacks that don't fire. A ...

  8. Java基础知识(重载和覆盖)

    重载(overload): 在一个类中,如果出现了两个或者两个以上的同名函数,只要它们的参数的个数,或者参数的类型不同,即可称之为该函数重载了. 即当函数同名时,只看参数列表.和返回值类型没关系. 重 ...

  9. vue中mixins的使用

    与vuex的区别 经过上面的例子之后,他们之间的区别应该很明显了哈~ vuex:用来做状态管理的,里面定义的变量在每个组件中均可以使用和修改,在任一组件中修改此变量的值之后,其他组件中此变量的值也会随 ...

  10. hash值重写,就是以自己定义的规则来显示hash值

    未重写hashCode值 重写hashCode后的值