转自:http://blog.csdn.net/Bruce_0712/article/details/63683264

CUDA之Dynamic Parallelism详解(一)

1. 循环的并行化:

(1)循环固定

(2)内循环依赖于外循环

without dynamic parallelism

with dynamic parallelism

examples:

 
0

0
===============================================================================================================================================================================
 
 

CUDA 5.0中引入动态并行化,使得在device端执行的kernel的线程也能跟在host上一样launch kernels,只有支持CC3.5或者以上的设备中才能支持。动态并行化使用CUDA Device Runtime library(cudadevrt),它是一个能在device code中调用的CUDA runtime子集。

编译链接

为了支持动态并行化,必须使用两步分离编译和链接的过程:首先,设定-c和-rdc=true(–relocatable-device-code=true)来生成relocatable device code来进行后续链接,可以使用-dc(–device -c)来合并这两个选项;然后将上一步目标文件和cudadevrt库进行连接生成可执行文件,-lcudadevrt。过程如下图

 
 
 
 
 

C++

 
1
2
nvcc -arch=sm_35 -dc myprog.cu -o myprog.o
nvcc -arch=sm_35 myprog.o -lcudadevrt -o myprog

或者简化成一步

 
 
 
 
 
 

C++

 
1
nvcc -arch=sm_35 -rdc=true myprog.cu -lcudadevrt -o myprog.o

执行、同步

在CUDA编程模型中,一组执行的kernel的线程块叫做一个grid。在CUDA动态并行化,parent grid能够调用child grids。child grid继承parant grid的特定属性和限制,如L1 cache、shared_memory、栈大小。如果一个parent grid有M个block和N个thread,如果对child kernel launch没有控制的话,那个将产生M*N个child kernel launch。如果想一个block产生一个child kernel,那么只需要其中一个线程launch a kernel就行。如下

 
 
 
 
 
 

C++

 
1
2
3
if(threadIdx.x == 0) {
  child_k <<< (n + bs - 1) / bs, bs >>> ();
}

grid lanuch是完全嵌套的,child grids总是在发起它们的parent grids结束前完成,这可以看作是一个一种隐式的同步。

如果parent kernel需要使用child kernel的计算结果,也可以使用CudaDeviceSynchronize(void)进行显示的同步,这个函数会等待一个线程块发起的所有子kernel结束。往往不知道一个线程块中哪些子kernel已经执行,可以通过下述方式进行一个线程块级别的同步

 
 
 
 
 
 

C++

 
1
2
3
4
5
6
void threadBlockDeviceSynchronize(void) {
  __syncthreads();
  if(threadIdx.x == 0)
    cudaDeviceSynchronize();
  __syncthreads();
}

CudaDeviceSynchronize(void)调用开销较大,不是必须的时候,尽量减少使用,同时不要在父kernel退出时调用,因为结束时存在上述介绍的隐式同步。

内存一致

当子 grids开始与结束之间,父grids和子grids有完全一致的global memory view。

当子kernel launch的时候,global memory视图不一致。

 
 
 
 
 
 

C++

 
1
2
3
4
5
6
7
8
9
10
11
12
__device__ int v = 0;
 
__global__ void child_k(void) {
  printf("v = %d\n", v);
}
 
__global__ void parent_k(void) {
  v = 1;
  child_k <<< 1, 1 >>>> ();
  v = 2; // RACE CONDITION
  cudaDeviceSynchronize();
}

在子kernel launch之后,显示同步之前,parent grid不能对 child grid读取的内存做写入操作,否则会造成race condition。

向Child grids传递指针

指针的传递存在限制:

  • 可以传递的指针:global memory(包括__device__变量和malloc分配的内存),zero-copy host端内存,常量内存。
  • 不可以传递的指针:shared_memory(__shared__变量), local memory(包括stack变量)

Device Streams和Events

所有在device上创建的streams都是non-blocking的,不支持默认NULL stream的隐式同步。创建流的方式如下

 
 
 
 
 
 

C++

 
1
2
cudaStream_t s;
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);

一旦一个device stream被创建,它能被一个线程块中其他线程使用。只有当这个线程块完成执行的时候,这个stream才能被其他线程块或者host使用。反之亦然。

Event也是支持的,不过有限制,只支持在不同stream之间使用cudaStreamWaitEvent()指定执行顺序,而不能使用event来计时或者同步。

Recursion Depth和Device Limits

递归深度包括两个概念:

  • nesting depth:递归grids的最大嵌套层次,host端的为0;
  • synchronization depth:cudaDeviceSynchronize()能调用的最大嵌套层次,host端为1,cudaLimitDevRuntimeSyncDepth应该设定为maximum 所以你吃肉你咋体on depth加1,设定方式如 cudaDeviceLimit(cudaLimitDevRuntimeSyncDepth, 4).

maximum nesting depth有硬件限制,在CC3.5中, 对depth 的限制为24. synchronization depth也一样。

从外到内,直到最大同步深度,每一次层会保留一部分内存来保存父block的上下文数据,即使这些内存没有被使用。所以递归深度的设定需要考虑到每一层所预留的内存。

另外还有一个限制是待处理的子grid数量。pending launch buffer用来维持launch queue和追踪当前执行kernel的状态。通过

 
 
 
 
 
 

C++

 
1
cudaDeviceSetLimit(cudaLimitDevRuntimePendingLaunchCount, 32768);

来设定合适的限制。否则通过cudaGetLastError()调用可以返回CudaErrorLaunchPendingCountExceeded的错误。

动态并行化执行有点类似树的结构,但与CPU上树处理也有些不同。类似深度小,分支多,比较茂密的树的执行结构,比较适合动态并行化的处理。深度大,每层节点少的树的执行结构,则不适合动态并行化。

characteristic tree processing dynamic parallelism
node thin (1 thread) thick (many threads)
branch degree small (usually < 10) large (usually > 100)
depth large small

==========================================================================================================
 
 

到目前为止,所有kernel都是在host端调用,GPU的工作完全在CPU的控制下。CUDA Dynamic Parallelism允许GPU kernel在device端创建调用。Dynamic Parallelism使递归更容易实现和理解,由于启动的配置可以由device上的thread在运行时决定,这也减少了host和device之间传递数据和执行控制。我们接下来会分析理解使用Dynamic Parallelism。

Nested Execution

在host调用kernel和在device调用kernel的语法完全一样。kernel的执行则被分为两种类型:parent和child。一个parent thread,parent block或者parent grid可以启动一个新的grid,即child grid。child grid必须在parent 之前完成,也就是说,parent必须等待所有child完成。

当parent启动一个child grid时,在parent显式调用synchronize之前,child不保证会开始执行。parent和child共享同一个global和constant memory,但是有不同的shared 和local memory。不难理解的是,只有两个时刻可以保证child和parent见到的global memory完全一致:child刚开始和child完成。所有parent对global memory的操作对child都是可见的,而child对global memory的操作只有在parent进行synchronize操作后对parent才是可见的。

Nested Hello World on the GPU

为了更清晰的讲解Dynamic Parallelism,我们改编最开始写的hello world程序。下图显示了使用Dynamic Parallelism的执行过程,host调用parent grid(每个block八个thread)。thread 0调用一个child grid(每个block四个thread),thread 0 的第一个thread又调用一个child grid(每个block两个thread),依次类推。

下面是具体的代码,每个thread会先打印出Hello World;然后,每个thread再检查自己是否该停止。

__global__ void nestedHelloWorld(int const iSize,int iDepth) {
int tid = threadIdx.x;
printf("Recursion=%d: Hello World from thread %d block %d\n",iDepth,tid,blockIdx.x);
// condition to stop recursive execution
if (iSize == 1) return;
// reduce block size to half
int nthreads = iSize>>1;
// thread 0 launches child grid recursively
if(tid == 0 && nthreads > 0) {
nestedHelloWorld<<<1, nthreads>>>(nthreads,++iDepth);
printf("-------> nested execution depth: %d\n",iDepth);
}
}

编译:

$ nvcc -arch=sm_35 -rdc=true nestedHelloWorld.cu -o nestedHelloWorld -lcudadevrt

-lcudadevrt是用来连接runtime库的,跟gcc连接库一样。-rdc=true使device代码可重入,这是DynamicParallelism所必须的,至于原因则将是一个比较大的话题,以后探讨。

代码的输出为:

./nestedHelloWorld Execution Configuration: grid 1 block 8
Recursion=0: Hello World from thread 0 block 0
Recursion=0: Hello World from thread 1 block 0
Recursion=0: Hello World from thread 2 block 0
Recursion=0: Hello World from thread 3 block 0
Recursion=0: Hello World from thread 4 block 0
Recursion=0: Hello World from thread 5 block 0
Recursion=0: Hello World from thread 6 block 0
Recursion=0: Hello World from thread 7 block 0
-------> nested execution depth: 1
Recursion=1: Hello World from thread 0 block 0
Recursion=1: Hello World from thread 1 block 0
Recursion=1: Hello World from thread 2 block 0
Recursion=1: Hello World from thread 3 block 0
-------> nested execution depth: 2
Recursion=2: Hello World from thread 0 block 0
Recursion=2: Hello World from thread 1 block 0
-------> nested execution depth: 3
Recursion=3: Hello World from thread 0 block 0

这里的01234….输出顺序挺诡异的,太规整了,我们暂且认为CUDA对printf做过修改吧。还有就是,按照CPU递归程序的经验,这里的输出顺序就更怪了,当然,肯定不是编译器错误或者CUDA的bug,大家可以在调用kernel后边加上cudaDeviceSynchronize,就可以看到“正常”的顺序了,原因也就清楚了。

使用nvvp可以查看执行情况,空白说明parent在等待child执行结束:

$nvvp ./nesttedHelloWorld

接着,我们尝试使用两个block而不是一个:

$ ./nestedHelloWorld 2

输出是:

./nestedHelloWorld 2Execution Configuration: grid 2 block 8
Recursion=0: Hello World from thread 0 block 1
Recursion=0: Hello World from thread 1 block 1
Recursion=0: Hello World from thread 2 block 1
Recursion=0: Hello World from thread 3 block 1
Recursion=0: Hello World from thread 4 block 1
Recursion=0: Hello World from thread 5 block 1
Recursion=0: Hello World from thread 6 block 1
Recursion=0: Hello World from thread 7 block 1
Recursion=0: Hello World from thread 0 block 0
Recursion=0: Hello World from thread 1 block 0
Recursion=0: Hello World from thread 2 block 0
Recursion=0: Hello World from thread 3 block 0
Recursion=0: Hello World from thread 4 block 0
Recursion=0: Hello World from thread 5 block 0
Recursion=0: Hello World from thread 6 block 0
Recursion=0: Hello World from thread 7 block 0
-------> nested execution depth: 1
-------> nested execution depth: 1
Recursion=1: Hello World from thread 0 block 0
Recursion=1: Hello World from thread 1 block 0
Recursion=1: Hello World from thread 2 block 0
Recursion=1: Hello World from thread 3 block 0
Recursion=1: Hello World from thread 0 block 0
Recursion=1: Hello World from thread 1 block 0
Recursion=1: Hello World from thread 2 block 0
Recursion=1: Hello World from thread 3 block 0
-------> nested execution depth: 2
-------> nested execution depth: 2
Recursion=2: Hello World from thread 0 block 0
Recursion=2: Hello World from thread 1 block 0
Recursion=2: Hello World from thread 0 block 0
Recursion=2: Hello World from thread 1 block 0
-------> nested execution depth: 3
-------> nested execution depth: 3
Recursion=3: Hello World from thread 0 block 0
Recursion=3: Hello World from thread 0 block 0

从上面结果来看,首先应该注意到,所有child的block的id都是0。下图是调用过程,parent有两个block了,但是所有child都只有一个blcok:

nestedHelloWorld<<<1, nthreads>>>(nthreads, ++iDepth);

注意:Dynamic Parallelism只有在CC3.5以上才被支持。通过Dynamic Parallelism调用的kernel不能执行于不同的device(物理上实际存在的)上。调用的最大深度是24,但实际情况是,kernel要受限于memory资源,其中包括为了同步parent和child而需要的额外的memory资源。

Nested Reduction

学过算法导论之类的算法书应该知道,因为递归比较消耗资源的,所以如果可以的话最好是展开,而这里要讲的恰恰相反,我们要实现递归,这部分主要就是再次证明DynamicParallelism的好处,有了它就可以实现像C那样写递归代码了。

下面的代码就是一份实现,和之前一样,每个child的有一个block,block中第一个thread调用kernel,不同的是,parent的grid有很多的block。第一步还是讲global memory的地址g_idata转化为每个block本地地址。然后,if判断是否该退出,退出的话,就将结果拷贝回global memory。如果不该退出,就进行本地reduction,一般的线程执行in-place(就地)reduction,然后,同步block来保证所有部分和的计算。thread0再次产生一个只有一个block和当前一半数量thread的child grid。

__global__ void gpuRecursiveReduce (int *g_idata, int *g_odata,
unsigned int isize) {
// set thread ID
unsigned int tid = threadIdx.x;
// convert global data pointer to the local pointer of this block
int *idata = g_idata + blockIdx.x*blockDim.x;
int *odata = &g_odata[blockIdx.x];
// stop condition
if (isize == 2 && tid == 0) {
g_odata[blockIdx.x] = idata[0]+idata[1];
return;
}
// nested invocation
int istride = isize>>1;
if(istride > 1 && tid < istride) {
// in place reduction
idata[tid] += idata[tid + istride];
}
// sync at block level
__syncthreads();
// nested invocation to generate child grids
if(tid==0) {
gpuRecursiveReduce <<<1, istride>>>(idata,odata,istride);
// sync all child grids launched in this block
cudaDeviceSynchronize();
}
// sync at block level again
__syncthreads();
}

编译运行,下面结果是运行在Kepler K40上面:

$ nvcc -arch=sm_35 -rdc=true nestedReduce.cu -o nestedReduce -lcudadevrt
./nestedReduce starting reduction at device 0: Tesla K40c
array 1048576 grid 2048 block 512
cpu reduce elapsed 0.000689 sec cpu_sum: 1048576
gpu Neighbored elapsed 0.000532 sec gpu_sum: 1048576<<<grid 2048 block 512>>>
gpu nested elapsed 0.172036 sec gpu_sum: 1048576<<<grid 2048 block 512>>>

相较于neighbored,nested的结果是非常差的。

从上面结果看,2048个block被初始化了。每个block执行了8个recursion,16384个child block被创建,__syncthreads也被调用了16384次。这都是导致效率很低的原因。

当一个child grid被调用后,他看到的memory是和parent完全一样的,因为child只需要parent的一部分数据,block在每个child grid的启动前的同步操作是不必要的,修改后:

__global__ void gpuRecursiveReduceNosync (int *g_idata, int *g_odata,unsigned int isize) {
// set thread ID
unsigned int tid = threadIdx.x;
// convert global data pointer to the local pointer of this block
int *idata = g_idata + blockIdx.x * blockDim.x;
int *odata = &g_odata[blockIdx.x];
// stop condition
if (isize == 2 && tid == 0) {
g_odata[blockIdx.x] = idata[0] + idata[1];
return;
}
// nested invoke
int istride = isize>>1;
if(istride > 1 && tid < istride) {
idata[tid] += idata[tid + istride];
if(tid==0) {
gpuRecursiveReduceNosync<<<1, istride>>>(idata,odata,istride);
}
}
}

运行输出,时间减少到原来的三分之一:

./nestedReduceNoSync starting reduction at device 0: Tesla K40c
array 1048576 grid 2048 block 512
cpu reduce elapsed 0.000689 sec cpu_sum: 1048576
gpu Neighbored elapsed 0.000532 sec gpu_sum: 1048576<<<grid 2048 block 512>>>
gpu nested elapsed 0.172036 sec gpu_sum: 1048576<<<grid 2048 block 512>>>
gpu nestedNosyn elapsed 0.059125 sec gpu_sum: 1048576<<<grid 2048 block 512>>>

不过,性能还是比neighbour-paired要慢。接下来在做点改动,主要想法如下图所示,kernel的调用增加了一个参数iDim,这是因为每次递归调用,child block的大小就减半,parent 的blockDim必须传递给child grid,从而使每个thread都能计算正确的global memory偏移地址。注意,所有空闲的thread都被移除了。相较于之前的实现,每次都会有一半的thread空闲下来而被移除,也就释放了一半的计算资源。

__global__ void gpuRecursiveReduce2(int *g_idata, int *g_odata, int iStride,int const iDim) {
// convert global data pointer to the local pointer of this block
int *idata = g_idata + blockIdx.x*iDim;
// stop condition
if (iStride == 1 && threadIdx.x == 0) {
g_odata[blockIdx.x] = idata[0]+idata[1];
return;
}
// in place reduction
idata[threadIdx.x] += idata[threadIdx.x + iStride];
// nested invocation to generate child grids
if(threadIdx.x == 0 && blockIdx.x == 0) {
gpuRecursiveReduce2 <<<gridDim.x,iStride/2>>>(
g_idata,g_odata,iStride/2,iDim);
}
}

编译运行:

./nestedReduce2 starting reduction at device 0: Tesla K40c
array 1048576 grid 2048 block 512
cpu reduce elapsed 0.000689 sec cpu_sum: 1048576
gpu Neighbored elapsed 0.000532 sec gpu_sum: 1048576<<<grid 2048 block 512>>>
gpu nested elapsed 0.172036 sec gpu_sum: 1048576<<<grid 2048 block 512>>>
gpu nestedNosyn elapsed 0.059125 sec gpu_sum: 1048576<<<grid 2048 block 512>>>
gpu nested2 elapsed 0.000797 sec gpu_sum: 1048576<<<grid 2048 block 512>>>

从这个结果看,数据又好看了不少,可以猜测,大约是由于调用了较少的child grid,我们可以用nvprof来验证下:

$ nvprof ./nestedReduce2

部分输出结果如下,第二列上显示了dievice kernel 的调用次数,第一个和第二个创建了16384个child grid。gpuRecursiveReduce2八层nested Parallelism只创建了8个child。

Calls (host) Calls (device) Avg Min Max Name
1 16384 441.48us 2.3360us 171.34ms gpuRecursiveReduce
1 16384 51.140us 2.2080us 57.906ms gpuRecursiveReduceNosync
1 8 56.195us 22.048us 100.74us gpuRecursiveReduce2
1 0 352.67us 352.67us 352.67us reduceNeighbored

对于一个给定的算法,我们可以有很多种实现方式,避免大量的nested 调用可以提升很多性能。同步对算法的正确性至关重要,但也是一个消耗比较大的操作,block内部的同步操作倒是可以去掉。因为在device上运行nested程序需要额外的资源,nested调用是有限的。

【转】CUDA之Dynamic Parallelism详解的更多相关文章

  1. 详解动态规划(Dynamic Programming)& 背包问题

    详解动态规划(Dynamic Programming)& 背包问题 引入 有序号为1~n这n项工作,每项工作在Si时间开始,在Ti时间结束.对于每项工作都可以选择参加与否.如果选择了参与,那么 ...

  2. CUDA ---- Dynamic Parallelism

    Dynamic Parallelism 到目前为止,所有kernel都是在host端调用,GPU的工作完全在CPU的控制下.CUDA Dynamic Parallelism允许GPU kernel在d ...

  3. c# 把一个匿名对象赋值给一个Object类型的变量后,怎么取这个变量? c# dynamic动态类型和匿名类 详解C# 匿名对象(匿名类型)、var、动态类型 dynamic 深入浅析C#中的var和dynamic

    比如有一个匿名对象,var  result =......Select( a=>new {  id=a.id, name=a.name});然后Object  obj =  result ;我怎 ...

  4. Kintinuous 相关论文 Volume Fusion 详解

    近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...

  5. suricata.yaml (一款高性能的网络IDS、IPS和网络安全监控引擎)默认配置文件(图文详解)

    不多说,直接上干货! 前期博客 基于CentOS6.5下Suricata(一款高性能的网络IDS.IPS和网络安全监控引擎)的搭建(图文详解)(博主推荐) 或者 基于Ubuntu14.04下Suric ...

  6. C#进阶系列——WebApi 接口返回值不困惑:返回值类型详解

    前言:已经有一个月没写点什么了,感觉心里空落落的.今天再来篇干货,想要学习Webapi的园友们速速动起来,跟着博主一起来学习吧.之前分享过一篇 C#进阶系列——WebApi接口传参不再困惑:传参详解  ...

  7. 3.awk数组详解及企业实战案例

    awk数组详解及企业实战案例 3.打印数组: [root@nfs-server test]# awk 'BEGIN{array[1]="zhurui";array[2]=" ...

  8. C#进阶系列——WebApi 接口参数不再困惑:传参详解

    前言:还记得刚使用WebApi那会儿,被它的传参机制折腾了好久,查阅了半天资料.如今,使用WebApi也有段时间了,今天就记录下API接口传参的一些方式方法,算是一个笔记,也希望能帮初学者少走弯路.本 ...

  9. ElasticSearch第四步-查询详解

    ElasticSearch系列学习 ElasticSearch第一步-环境配置 ElasticSearch第二步-CRUD之Sense ElasticSearch第三步-中文分词 ElasticSea ...

随机推荐

  1. Map.putAll()用法

    import Java.util.HashMap; public class Map_putAllTest {public static void main(String[] args){   //两 ...

  2. array_reverse()函数

    $a=array(1,2,4,5,6); print_r(array_reverse($a)); 结果:Array ( [0] => 6                              ...

  3. 阿里云配置ssh

    1.申请证书,从我的域名列表 右侧的操作栏中点击- ssl 2.配置  nginx config ->  /etc/nginx/sites-enabled/default 底部添加:(我的是dj ...

  4. HDU 6095 17多校5 Rikka with Competition(思维简单题)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  5. meson 中调用shell script

    meson 中有时需要调用其他脚本语言,加之对meson build system接口和原理不熟悉,无奈只有静心学习meson 官方文档,终于皇天不负有心人让我找到了: run_command() 只 ...

  6. ELF文件加载与动态链接(二)

    GOT应该保存的是puts函数的绝对虚地址,这里为什么保存的却是puts@plt的第二条指令呢? 原来“解释器”将动态库载入内存后,并没有直接将函数地址更新到GOT表中,而是在函数第一次被调用时,才会 ...

  7. 【特征提取】MultiBlock-LBP特征

    MB-LBP特征,注意区分是Multi-block LBP还是MultiScale Block LBP,区别是是否使用了多尺度方法.其中Multiscale Block LBP,来源于论文,中科院的人 ...

  8. 【linux基础】使用命令行编译运行c++程序

    前言 在linux系统运行程序,小鹅知道的有3种编译方式,一种是直接命令行编译,一种是使用Cmake,一种是使用脚本文件(*.sh).本文介绍的是使用命令行编译. 使用过程 注意不同系统的编译器版本可 ...

  9. 深度学习环境配置Ubuntu16.04+CUDA8.0+CUDNN5

    深度学习从12年开始打响,配置深度学习环境软件一直是一个头疼的问题,如何安装显卡驱动,如何安装CUDA,如何安装CUDNN:Ubuntu官方一直吐槽Nvidia显卡驱动有问题,网上大神也给出了关闭li ...

  10. lnmp架构、mysql的安装、php的安装、nginx相关

    1.lnmp架构 2.mysql的安装: mysql5.6自动安装脚本: yum install perl-Data-Dumper.x86_64 libaio.x86_64 libaio-devel. ...