字典树优化DP

                               Remember the Word
Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

[Submit]   [Go Back]   [Status]

Description

 

Neal is very curious about combinatorial problems, and now here comes a problem about words. Knowing that Ray has a photographic memory and this may not trouble him, Neal gives it to Jiejie.

Since Jiejie can't remember numbers clearly, he just uses sticks to help himself. Allowing for Jiejie's only 20071027 sticks, he can only record the remainders of the numbers divided by total amount of sticks.

The problem is as follows: a word needs to be divided into small pieces in such a way that each piece is from some given set of words. Given a word and the set of words, Jiejie should calculate the number of ways the given word can be divided, using the words in the set.

Input

The input file contains multiple test cases. For each test case: the first line contains the given word whose length is no more than 300 000.

The second line contains an integer S<tex2html_verbatim_mark> , 1S4000<tex2html_verbatim_mark> .

Each of the following S<tex2html_verbatim_mark> lines contains one word from the set. Each word will be at most 100 characters long. There will be no two identical words and all letters in the words will be lowercase.

There is a blank line between consecutive test cases.

You should proceed to the end of file.

Output

For each test case, output the number, as described above, from the task description modulo 20071027.

Sample Input

abcd
4
a
b
cd
ab

Sample Output

Case 1: 2
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <string> using namespace std; const int MOD=;
const int maxn=; int m,dp[];
char str[]; struct Trie
{
int tot,root,child[maxn][];
bool flag[maxn];
Trie()
{
memset(child[],,sizeof(child[]));
flag[]=false;
root=tot=;
}
void Init()
{
memset(child[],,sizeof(child[]));
flag[]=false;
root=tot=;
}
void Insert(const char*str)
{
int *cur=&root;
for(const char *p=str;*p;p++)
{
cur=&child[*cur][*p-'a'];
if(*cur==)
{
*cur=++tot;
memset(child[tot],,sizeof(child[tot]));
flag[tot]=false;
}
}
flag[*cur]=true;
}
bool query(const char* str,int i)
{
int *cur=&root;
int l=;
for(const char*p=str;*p&&*cur;p++,l++)
{
cur=&child[*cur][*p-'a'];
if(flag[*cur])
{
dp[i]=(dp[i]+dp[i+l])%MOD;
}
}
return (*cur&&flag[*cur]);
}
}tree; int main()
{
int cas=;
while(scanf("%s",str)!=EOF)
{
int len=strlen(str);
scanf("%d",&m);
tree.Init();
while(m--)
{
char dic[];
scanf("%s",dic);
tree.Insert(dic);
}
memset(dp,,sizeof(dp));
dp[len]=;
for(int i=len-;i>=;i--)
{
tree.query(str+i,i);
}
printf("Case %d: %d\n",cas++,dp[]%MOD);
}
return ;
}

UVA 1401 Remember the Word的更多相关文章

  1. UVA 1401 - Remember the Word(Trie+DP)

    UVA 1401 - Remember the Word [题目链接] 题意:给定一些单词.和一个长串.问这个长串拆分成已有单词,能拆分成几种方式 思路:Trie,先把单词建成Trie.然后进行dp. ...

  2. UVA 1401 Remember the Word(用Trie加速动态规划)

    Remember the Word Neal is very curious about combinatorial problems, and now here comes a problem ab ...

  3. LA 3942 && UVa 1401 Remember the Word (Trie + DP)

    题意:给你一个由s个不同单词组成的字典和一个长字符串L,让你把这个长字符串分解成若干个单词连接(单词是可以重复使用的),求有多少种.(算法入门训练指南-P209) 析:我个去,一看这不是一个DP吗?刚 ...

  4. UVA - 1401 Remember the Word(trie+dp)

    1.给一个串,在给一个单词集合,求用这个单词集合组成串,共有多少种组法. 例如:串 abcd, 单词集合 a, b, cd, ab 组合方式:2种: a,b,cd ab,cd 2.把单词集合建立字典树 ...

  5. UVA - 1401 | LA 3942 - Remember the Word(dp+trie)

    https://vjudge.net/problem/UVA-1401 题意 给出S个不同的单词作为字典,还有一个长度最长为3e5的字符串.求有多少种方案可以把这个字符串分解为字典中的单词. 分析 首 ...

  6. UVa 1401 (Tire树) Remember the Word

    d(i)表示从i开始的后缀即S[i, L-1]的分解方法数,字符串为S[0, L-1] 则有d(i) = sum{ d(i+len(x)) | 单词x是S[i, L-1]的前缀 } 递推边界为d(L) ...

  7. uva 1401 dp+Trie

    http://uva.onlinejudge.org/index.php? option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. uva 1401

    Neal is very curious about combinatorial problems, and now here comes a problem about words. Knowing ...

  9. 1401 - Remember the Word

    注意到单词的长度最长100,其实最糟糕复杂度应该能到O(300005*100),需要注意的是在字典树上匹配单词时,一旦不匹配,则后面的就不会匹配,需要break出来(这个害我TLE查了半天,日!),还 ...

随机推荐

  1. An error occurred during the installation of assembly 'Microsoft.VC90.CRT……的问题

    有一段时间没有用到AnkhSvn了,今天工作需要安装了一下.结果安装到一半就无法继续了,提示An error occurred during the installation of assembly ...

  2. 简单socket()编程

    客户端: 1.socket( int af, int type, int protocol) socket()函数用于根据指定的地址族.数据类型和协议来分配一个套接口的描述字及其所用的资源.如果协议p ...

  3. Resharper 检测所有NullReferenceExceptions(空指针)

    需求分析 "null exception"很见的一种异常,但在某些情况下却会引起严重的bug! 本文目的就是对代码进行null 的检查,避免不应该出现的Error. 本文借助res ...

  4. express中url的参数传递和获取

    1,传统get参数 浏览器通过这种形式的url访问localhost/userlist?id=xxx&name=yyy,这种方式可以通过req.query.id获取参数的值 router.ge ...

  5. eclipse安装版本

    http://www.08kan.com/gwk/MzAwOTE3NDY5OA/203521023/1/cdf557d3a1d4535a6c691ce756c3f8b1.html

  6. 调用altera IP核的仿真流程—上

    调用altera IP核的仿真流程—上 在学习本节内容之后,请详细阅读<基于modelsim-SE的简单仿真流程>,因为本节是基于<基于modelsim-SE的简单仿真流程>的 ...

  7. 延迟加载外部js文件,延迟加载图片(jquery.lazyload.js和echo,js)

    js里一说到延迟加载,大都离不开两种情形,即外部Js文件的延迟加载,以及网页图片的延迟加载: 1.首先简单说一下js文件的3种延迟加载方式: (1)<script type="text ...

  8. OpenStack从入门到放弃

    OpenStack从入门到放弃 目录: 为何选择云计算/云计算之前遇到的问题 什么是云计算 云服务模式 云应用形式 传统应用与云感知应用 openstack及其相关组件介绍 flat/vlan/gre ...

  9. web.xml加载顺序

    一 1.启动一个WEB项目的时候,WEB容器会去读取它的配置文件web.xml,读取<listener>和<context-param>两个结点. 2.紧急着,容创建一个Ser ...

  10. C#-WebForm-★★★ 分页展示 ★★★

    什么是"分页展示"? 分页展示就是将庞大的数据分成若干页,每页展示若干条数据,向用户展示数据 流程:客户端浏览器向服务器发送查询请求 → 服务器从数据库查询数据 → 服务器转换成代 ...