题解:

质量不错的一套题目啊。。(题解也很不错啊)

t1:

首先暴力显然有20分,把ai相同的缩在一起就有40分了

然后会发现由于原来的式子有个%很不方便处理

so计数题嘛 考虑一下容斥

最终步数=初始步数-使用tab键减少的步数=(x-1)*sigma(ai/x)

这个显然就很好维护了

我们考虑对于ai/x只会有根号ai个取值

然后每个值分别实现区间加区间减 这样用差分来做就是n根号x 线段树nlogn根号x

复杂度稍微大了点

满分做法就是枚举x,然后枚举y,计算a[i]/x=y的数有几个,计算用前缀和处理一下

复杂度的话是n/1+n/2+n/3+...=nlogn的

t2:

感觉跟zjoi的dp挺像的。。(虽然简单一点)

首先要先弄出一波结论

就是若我们使用了ai,且ai<aj,那么再使用j就没有任何影响了

所以我们可以先将元素降序排列

令f[i][j]表示前i个,%的值为j是否可行

转移就是从f[i][j]------->f[i+1][j%a[i+1]]

这样第一问就解决了

对于第二问

首先排序是一样的

我们可以令f[j][k] 表示 当前%的值为j,其中有k个值比j大且还没有放(比j小的是一定还没放的)

那么转移就是f[j][k]--->f[j%a[now]][k+sum[now]-sum[j]] (now代表比j小的元素)

或者f[j][k]--->f[j][k-1]

这样复杂度是n^3的

考虑优化状态

令f[i]表示当前%的值为i的方案数

那么考虑转移 f[i]---->f[j] 我们会发现,对于i-j之间的元素(设有y个),只有插入在这个点之后就行了,设x=比j小的元素个数

其实就是x+1个空里插y个数

那就是乘以A(y-1,x+y)

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll mo1=;
#define N 11100
ll jc1[N*],jc2[N*],n,m,a[N],f[][N],dp[N];
ll sum[N];
ll x,y,ans;
bool cmp(ll x,ll y)
{
return(x>y);
}
ll get_gcd(ll a,ll b,ll &x,ll &y)
{
// cout<<a<<" "<<b<<endl;
if (b==)
{
x=; y=; return(b);
}
ll xx=get_gcd(b,a%b,y,x);
y-=x*(a/b);
return xx;
}
ll get_ans(ll x,ll y)
{
// cout<<x<<" "<<y<<endl;
if (y==) return();
ll ans=(jc1[x+y-]*jc2[x-])%mo1;
// cout<<jc1[x+y-1]<<" "<<jc2[x-1]<<" "<<ans<<endl;
return ans;
}
int main()
{
freopen("noip.in","r",stdin);
freopen("noip.out","w",stdout);
std::ios::sync_with_stdio(false);
cin>>n>>m;
for (ll i=;i<=n;i++)
cin>>a[i];
sort(a+,a+n+,cmp);
f[][m]=;
for (ll i=;i<=n-;i++)
{
for (ll j=;j<=m;j++)
if (f[i][j])
f[i+][j%a[i]]=,f[i+][j]=;
}
for (ll j=;j<=m;j++)
if (f[n][j])
f[n+][j%a[n]]=;
ll j;
for (j=m;j>-;j--)
if (f[n+][j]) break;
ans=j; cout<<ans<<endl;
jc1[]=jc2[]=jc1[]=jc2[]=;
for (ll i=;i<=;i++)
{
get_gcd(mo1,i,x,y);
x=(x+mo1)%mo1;
jc1[i]=jc1[i-]*i;
jc1[i]%=mo1;
jc2[i]=jc2[i-]*y;
jc2[i]%=mo1;
}
dp[m]=;
for (ll i=;i<=n;i++) sum[a[i]]++;
for (ll i=;i<=;i++) sum[i]+=sum[i-];
ll num=;
for (ll i=;i<=n;i++) if (a[i]>m) num++;
for (ll i=m;i>=ans;i--)
if (dp[i])
{
ll j;
for (j=;j<=n;j++)
if (a[j]<=i) break;
x=j;
for (ll j=x;j<=n;j++)
{
dp[i%a[j]]+=dp[i]*get_ans(sum[i%a[j]]+,sum[i]--sum[i%a[j]]);
get_ans(n-j+,j-x);
dp[i%a[j]]%=mo1;
}
}
ll ans1=dp[ans];
// cout<<ans1<<"XXX"<<endl;
ans1=ans1*get_ans(n-num+,num);
ans1%=mo1;
cout<<(ans1+mo1)%mo1<<endl;
return ;
}

UOJ Round #1 题解的更多相关文章

  1. UOJ Round #1 [数论 | DP 排列]

    UOJ Round #1 难度很良心啊! 做出了前两题,第三题看到仙人掌就吓哭了. [UR #1]缩进优化 就是求 \[ \sum_{i=1}^n a_i - (x-1)\sum_{i=1}^n\lf ...

  2. UOJ Round #15 [构造 | 计数 | 异或哈希 kmp]

    UOJ Round #15 大部分题目没有AC,我只是水一下部分分的题解... 225[UR #15]奥林匹克五子棋 题意:在n*m的棋盘上构造k子棋的平局 题解: 玩一下发现k=1, k=2无解,然 ...

  3. 【UOJ Round #5】

    构造+贪心/数论 为什么只有两个标题呢……因为第二题我不会…… 怎样提高智商 构造题……然而一开始半天我都yy不出来…… 后来我想:这题应该不会特别麻烦,而且既然样例只给了1,可能再给大一点就让人发现 ...

  4. 【UOJ Round #1】

    枚举/DP+排列组合 缩进优化 QAQ我当时一直在想:$min\{ \sum_{i=1}^n (\lfloor\frac{a[i]}{x}\rfloor + a[i] \ mod\ x) \}$ 然而 ...

  5. 【UOJ Round #8】

    A 一道不错的题,虽然大家都觉得是水题,然而蒟蒻我想出来的好慢……Orz alpq 发现其实就是一个网格图,每一个大块都是同一颜色……横纵坐标互不干扰…… //UOJ Round #8 A #incl ...

  6. Codeforces Round #556 题解

    Codeforces Round #556 题解 Div.2 A Stock Arbitraging 傻逼题 Div.2 B Tiling Challenge 傻逼题 Div.1 A Prefix S ...

  7. LibreOJ β Round #2 题解

    LibreOJ β Round #2 题解 模拟只会猜题意 题目: 给定一个长为 \(n\) 的序列,有 \(m\) 次询问,每次问所有长度大于 \(x\) 的区间的元素和的最大值. \(1 \leq ...

  8. Codeforces Round #569 题解

    Codeforces Round #569 题解 CF1179A Valeriy and Deque 有一个双端队列,每次取队首两个值,将较小值移动到队尾,较大值位置不变.多组询问求第\(m\)次操作 ...

  9. Codeforces Round #557 题解【更完了】

    Codeforces Round #557 题解 掉分快乐 CF1161A Hide and Seek Alice和Bob在玩捉♂迷♂藏,有\(n\)个格子,Bob会检查\(k\)次,第\(i\)次检 ...

随机推荐

  1. Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)

    Deep Neural Network for Image Classification: Application 预先实现的代码,保存在本地 dnn_app_utils_v3.py import n ...

  2. Java图片比对

    在自动化测试中,除了普通的值验证,经常还有一些图片验证,比如图片的匹配率,输出图片的差异图片等.本文主要用到了BufferedImage类来操作图片比对和输出差异图片,大体的思路如下: 1. 通过Im ...

  3. resultMap自定义某个javaBean的封装规则代码

    <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE mapper PUBLIC "- ...

  4. spfa判负环

    bfs版spfa void spfa(){ queue<int> q; ;i<=n;i++) dis[i]=inf; q.push();dis[]=;vis[]=; while(!q ...

  5. luogu P1070 道路游戏

    传送门 这里设\(f_i\)表示时刻\(i\)的答案 转移的话在\([i-p+1,i-1]\)之间枚举j,然后考虑从哪个点走过来 复杂度为\(O(n^3)\) // luogu-judger-enab ...

  6. 在浏览器中使用Javascript

    在浏览器中点击鼠标右键——检查,选择console,可以在里面写Javascript代码,并可以在页面实时看到结果: 关于JavaScript的几个注意事项: JavaScript 语句和 JavaS ...

  7. django(二)中间件与面向切面编程

    一.中间件概念 django 自带函数可以在几个环节调节收到请求.处理请求.处理异常.以及发送请求. 看这里给的链接好了,这是一个大佬的讲django中间件的博客,非常清楚:https://www.c ...

  8. python 错误--UnboundLocalError: local variable '**' referenced before assignment

    val = 9 def test(flag): if flag: val = 1 else: print("test") return val if __name__ == '__ ...

  9. 创建Git独立分支

    在使用git进行版本控制的某些场景中我们可能需要在一个项目中建立完全独立的分支,此分支将作为一个独立的版本历史根节点,不与之前任何分支拥有相同的版本祖先. 比如当我们要在一个项目中使用一个分支进行项目 ...

  10. 【转】Python中的字符串与字符编码

    [转]Python中的字符串与字符编码 本节内容: 前言 相关概念 Python中的默认编码 Python2与Python3中对字符串的支持 字符编码转换 一.前言 Python中的字符编码是个老生常 ...